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1 Introduction

Our aim is to give a view of the geometrical relationship between Minkowski
space, the space-time of special relativity, and projective twistor space, which
is CP3. We also give a hint as to how the Penrose transform takes functions on
twistor space to solutions of field equations in space-time. We refer to [2] for
details.

But we warm up by looking at a piece of classical geometry. Given a circle
centre O and radius r in R2, inversion in this circle is the mapping

t : R2 \ {O} → R2 \ {O}
∗http://stephenhuggett.com/index.html ©Stephen Huggett 2023
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defined by t(A) = A′, where A′ lies on the straight line through O and A, and
on the same side of O as A, and OA.OA′ = r2. This mapping has many lovely
properties but is not defined at O. We can fix this by adding to R2 a single
point at infinity, as follows.

Place a sphere on a plane, so that the point of contact is the south pole. Let
P be a point on the sphere, other than the north pole N . Draw a straight line
from N through P , and suppose that it intersects the plane at Q. Stereographic
projection is the mapping

σ : S2 \ {N} −→ R2 (1)

σ(P ) 7−→ Q (2)

It is a homeomorphism. The sphere has exactly one extra point, N , which is
“at infinity” in R2. S2 is called the one-point compactification of R2.

Circles and straight lines in R2 are mapped by σ−1 to circles on the sphere,
and, in particular, inversions in circles and reflections in straight lines in R2

are well-defined mappings from S2 to itself. The group of such mappings con-
tains the Euclidean group as a subgroup (because the Euclidean group can be
generated by reflections).

In the next section we will see how to define inversions in space-time, and
how to compactify space-time so that these inversions are well-defined.

2 Minkowski space

A point of space-time is an event (which is a point in space and an instant in
time). An observer S in space-time needs four coordinates (t, x, y, z) to describe
the events she sees. Suppose another observer S′, moving with respect to S,
uses the coordinates (t′, x′, y′, z′). We choose the x′, y′, and z′ axes to coincide
with the x, y, and z axes when t = 0, and we also choose t′ = 0 then too.
Subsequently the origin of S′ moves at constant speed v along the x axis of S,
keeping the y and y′ axes parallel. Note that we also choose S to be an inertial
frame of reference, which means that it is not accelerating. Then S′ is also
inertial.

Motivated by a desire to unify Newtonian mechanics with Maxwell’s theory
of electromagnetism, Einstein adopted the following two physical principles.

(a) All inertial frames of reference are equivalent for all physical experiments.

(b) Light has the same velocity c in all inertial frames of reference.

Einstein discovered that as a direct consequence of these two principles, the
transformation between S and S′ must be given by the standard Lorentz trans-
formation

t′ = γ(t− vx/c2) x′ = γ(x− vt) y′ = y z′ = z, (3)

where

γ =
1√

1− v2/c2
.
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Minkowski space M, the space-time of special relativity, is a four dimensional
real vector space. It has a metric

dxadxbgab = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 (4)

where x0 = ct, x1 = x, x2 = y, x3 = z. This metric can be positive, zero, or
negative, and so at each event

xa = (x0, x1, x2, x3)

in M there is a null cone, distinguishing these three cases.
For a mathematician, special relativity is the geometry of M under the trans-

formations which are isometries of the metric (4). These transformations form
the Lorentz group O(1, 3), which we can enlarge by including translations to
form the Poincaré group.

Exercise 1 Show that the transformation (3) is in the Lorentz group.

However, Maxwell’s equations for electromagnetism are in fact invariant un-
der an even larger group: the group of conformal transformations. This group
consists of the Poincaré group together with dilations and inversions.

An inversion in Minkowski space has the formula

xa 7−→ xa

∆
, (5)

where
∆ = xaxbgab.

However, this transformation (5) is not well defined on all of M, because it
is singular when ∆ = 0, which is the null cone at the origin. To overcome this
problem we need to compactify Minkowski space.

Consider R6 with coordinates (T, V,W,X, Y, Z) and the metric

dT 2 + dV 2 − dW 2 − dX2 − dY 2 − dZ2. (6)

We use the mapping M −→ R6 given by

xa 7−→ (x0,
1

2
(1−∆),−1

2
(1 + ∆), x1, x2, x3) (7)

to embed Minkowski space in the intersection of the O(2, 4) null cone N of the
origin of R6, described by

N = {(T, V,W,X, Y, Z) : T 2 + V 2 −W 2 −X2 − Y 2 − Z2 = 0}, (8)

with the hyperplane

H = {(T, V,W,X, Y, Z) : V −W = 1}. (9)

Exercise 2 Show that the mapping (7) is indeed an embedding of M in N ∩H.
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Exercise 3 Show that on any generator of N with V − W ̸= 0 we can find a
point in H and hence a point of M.

Exercise 4 Show that the mapping (7) is an isometry.

The space of generators of the null cone (8) is a quadric Q in RP5. It is
compact, and is the space which we choose to be compactified Minkowski space
M#. We have added points which correspond to those generators of the null
cone which do not intersect H.

To discover what these extra points look like locally we must go back to the
mapping (7). The non-compact space M is identified with a subset of the space
of generators, isometrically. The extra points in M# lie on the intersection of N
with the null hyperplane V = W through the origin. All such hyperplanes are
equivalent under O(2, 4) so to see what these extra points represent, we consider
instead the null hyperplane V +W = 0. From (7) we see that the points of M
corresponding to generators of N which lie in this hyperplane are just the null
cone of the origin in M. So we see that the extra points are a null cone, and we
have compactified Minkowski space by adding a null cone at infinity.

Finally, we complexify the space M# to obtain compactified complexified
Minkowski space, CM#.

3 Twistor space

Twistor space, T, is a four dimensional complex vector space with complex
coordinates

Zα = (Z0, Z1, Z2, Z3). (10)

Projective twistor space, PT, is the space of complex lines through the origin in
T, with homogeneous complex coordinates

Zα = (Z0 : Z1 : Z2 : Z3). (11)

Dual twistor space, T∗, is the space of linear functions on T:

Wα : T −→ C (12)

Zα 7−→ ZαWα (13)

where we assume summation over the repeated index. Alternatively, if we con-
sider a fixed dual twistor, Aα say, this defines a hyperplane through the origin
in T given by

{Zα : AαZ
α = 0}.

Dual twistor space is then the space of hyperplanes such as this.
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4 Klein correspondence

A line in PT can be determined by taking the skew-symmetrised outer product
of any two planes through it, as follows:

Lαβ = XαYβ −XβYα,

and then forgetting the overall scale. We denote the space of these Lαβ , up to
an overall scale, by F2. In coordinates, this skew-symmetric matrix is

Lαβ =


0 L01 L02 L03

−L01 0 L12 L13

−L02 −L12 0 L23

−L03 −L13 −L23 0

 . (14)

The space of such matrices up to an overall scale is CP5. However, Lαβ is
not only skew-symmetric, it is also simple: it was formed by taking an outer
product.

Lemma 1 Lαβ (skew) is also simple if and only if

LαβLγδ + LαγLδβ + LαδLβγ = 0. (15)

Proof
Suppose that the skew matrix Lαβ satisfies (15). Let P γ and Qδ be arbitrary

twistors. Then

LαβLγδP
γQδ + LαγLδβP

γQδ + LαδLβγP
γQδ = 0. (16)

Now let LγδP
γQδ = κ, LαγP

γ = Xα, and LβδQ
δ = Yβ . Then (16) becomes

κLαβ −XαYβ +XβYα = 0, (17)

and hence Lαβ is simple. We leave the other part of the proof as an exercise.
□

Exercise 5 Finish the proof of Lemma 1.

Therefore the space of skew simple Lαβ is a quadric in CP5. This is the
Klein correspondence.

Theorem 1 The space of lines in PT is isomorphic to CM#.

Proof
By making the following convenient choice of coordinates

T = i√
2
(L03 − L12) V = L23 +

1
2L01 W = L23 − 1

2L01

X = i√
2
(L02 − L13) Y = −1√

2
(L02 + L13) Z = −i√

2
(L12 + L03)

(18)
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equation (15) becomes

T 2 + V 2 −W 2 −X2 − Y 2 − Z2 = 0

which is the null cone of the origin in C6. Recall that we defined CM# to be the
space of generators of this null cone and so our quadric in CP5 can be thought
of as compactified complexified Minkowski space. Therefore, since this quadric
(15) is the space of lines in PT, we have established the result.

□

5 Causal structure

Let xa be the space-time point corresponding to a line L ⊂ PT. For a twistor
Zα to lie on L it must satisfy two linear equations. It follows from (7) and (18)
that (except when the line is given by Z2 = Z3 = 0) these two equations can
be written

(
Z0

Z1

)
=

i√
2

(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)(
Z2

Z3

)
. (19)

Exercise 6 Show this.

Now suppose that the twistor Zα also lies on the line corresponding to the
space-time point ya. Then(

Z0

Z1

)
=

i√
2

(
y0 + y3 y1 + iy2

y1 − iy2 y0 − y3

)(
Z2

Z3

)
. (20)

We will deduce from (19) and (20) that wa = xa − ya is a null vector. We
have (

0
0

)
=

i√
2

(
w0 + w3 w1 + iw2

w1 − iw2 w0 − w3

)(
Z2

Z3

)
, (21)

and therefore

0 =

∣∣∣∣ w0 + w3 w1 + iw2

w1 − iw2 w0 − w3

∣∣∣∣ (22)

= (w0 + w3)(w0 − w3)− (w1 + iw2)(w1 − iw2), (23)

so wa is null as required.

Exercise 7 Show the converse, that if xa − ya is a null vector then the lines in
PT corresponding to xa and ya intersect.
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We now have:

PT CM#

complex projective line point

intersection of lines null-separation of points

6 Real points

The points xa and ya above are complex: how do we pick out real points in
Minkowski space? Any twistor Zα lying on the line in PT corresponding to the
point xa satisfies (19), and if xa is real then

Z0Z2 + Z1Z3 + Z0Z2 + Z1Z3 = 0. (24)

Exercise 8 Show this.

The Hermitian form

Σ(Zα) = Z0Z2 + Z1Z3 + Z0Z2 + Z1Z3 (25)

divides PT into three regions:

Σ(Zα) > 0 PT+

Σ(Zα) = 0 PN

Σ(Zα) < 0 PT−

Now go back to (19), and think of Zα as a fixed point in PN. Any two real
solutions xa and ya of (19) must be null-separated, and so the set of solutions
is a (real) null line in Minkowski space. Therefore, points in PN correspond to
real null lines in M. The space of these real null lines is a real 5-dimensional
manifold, as can be seen from (25) or from counting them inM. Note that not all
real 5-dimensional manifolds can be extended to form a complex 3-dimensional
manifold: this is a special property of the null lines in M.

Also, a line L lies entirely in the upper half PT+ of projective twistor space if
and only if it corresponds to a point za = xa− iya in CM# with ya timelike and
future-pointing. Fields defined on this part of CM# have positive frequency, an
important distinction in quantum field theory which has thus been expressed
geometrically in PT.

Next, fix a line L in PN, with its corresponding real point xa in Minkowski
space. L is a complex projective line CP1, the Riemann sphere. Twistors on L
correspond to null lines through xa. So intrinsically (that is, as a set of points)
the line L in PN is the celestial sphere of the space-time point xa.

The equation (19) only works when we exclude the line Z2 = Z3 = 0, which
lies in PN. This corresponds to excluding from M# a point together with its
null cone. So lines other than this one correspond to points in M.
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We now have:

PN M#

point null line

line, intrinsically celestial sphere of a point

7 Functions on twistor space

In this section we consider a simple example of a function on PT and show how
to obtain from it a corresponding function on CM#. Let

f(Zα) =
1

(AαZα)(BβZβ)
. (26)

This is well defined everywhere in PT except on the two planes AαZ
α = 0 and

BβZ
β = 0. Strictly speaking, it is not a function, because it is homogeneous

of degree −2, not 0. So it should be thought of as a local section of the sheaf
O(−2). We ignore this for the moment, and treat f as a function.

Choose a point xa ∈ CM#, and restrict f to the line in PT corresponding to
xa. Then from (19) AαZ

α becomes

A0
i√
2

[
(x0 + x3)Z2 + (x1 + ix2)Z3)

]
+A1

i√
2

[
(x1 − ix2)Z2 + (x0 − x3)Z3

]
+A2Z

2 +A3Z
3,

which we abbreviate to aZ2 + bZ3, and similarly for BβZ
β . Now

f(Zα|xa) =
1

(aZ2 + bZ3)(cZ2 + dZ3)
. (27)

Note that the complex numbers a, b, c, and d depend on xa. Next, we perform
the following contour integral in the CP1 of the line in PT corresponding to xa:

ϕ(xa) =
1

2πi

∮
Z2dZ3 − Z3dZ2

(aZ2 + bZ3)(cZ2 + dZ3)
(28)

This is done by changing the coordinates(
z0

z1

)
=

(
a b
c d

)(
Z2

Z3

)
(29)

to obtain

ϕ(xa) =
1

2πi(ad− bc)

∮
z0dz1 − z1dz0

z0z1
. (30)
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Finally, we put z = z1/z0 to map this contour integral down onto C, and we
obtain

ϕ(xa) =
1

2πi(ad− bc)

∮
dz

z
(31)

=
1

ad− bc
. (32)

Suppose the line K of intersection of the two planes ZαAα = 0 and ZαBα = 0
corresponds to the point ka. Then it can be shown that

1

ad− bc
=

2

(A0B1 −A1B0)(xa − ka)(xb − kb)gab
. (33)

The significance of this result is that ϕ(xa) is automatically a solution of the
wave equation

1

c2
∂2ϕ

∂t2
− ∂2ϕ

∂x2
− ∂2ϕ

∂y2
− ∂2ϕ

∂z2
= 0

on the complement of the null cone of ka.
But the relationship between the twistor function f and the field ϕ is not

one-to-one. There is an equivalence class of twistor functions all of which lead
to the same ϕ. We will see that this class is described by Čech cohomology, as
follows.

Theorem 2

Ȟ1(PT \K;O(−2)) ∼= {analytic solutions of the wave equation on

the complement of the null cone of ka} (34)

In fact, all analytic solutions of all the zero rest mass free field equations (which
include Maxwell’s equations) can be constructed in a similar way, by starting
with functions f(Zα) homogeneous of degree n, for various integers n.

8 A double fibration

Here we describe the geometrical framework behind the calculation of ϕ(xa)
from f(Zα). Define

F1 = {S1 : S1 is a one-dimensional subspace of T}
F2 = {S2 : S2 is a two-dimensional subspace of T}

F1,2 = {(S1, S2) : S1 and S2 as above with S1 a subspace of S2}.

Note that F1 = PT and F2 = CM#. Now define the “forgetful” maps
µ : F1,2 −→ F1 given by

µ(S1, S2) = S1 (35)

and ν : F1,2 −→ F2 given by

ν(S1, S2) = S2, (36)
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and we then have the double fibration

F1,2

PT CM#

µ ν
�

�
�

�	

@
@

@
@R

Exercise 9 For Zα a point in PT, describe µ−1(Zα), which is called the fibre
of µ above Zα.

Exercise 10 For xa a point in CM#, describe ν−1(xa), which is called the fibre
of ν above xa.

Now the procedure in the previous section can be expressed as follows. Given
a function f(Zα) on a subset of PT, we define its pullback

µ∗(f)(Zα, xa) = f(Zα), (37)

which is a function on a subset of F1,2. Then we integrate µ∗(f) along the fibres
of ν, to obtain the function ϕ(xa) on a subset of CM#. What are the conditions
on these subsets? In general, we start by choosing

X ⊂ CM#

and then select the corresponding spaces

Y = ν−1(X) ⊂ F1,2

and
T = µ(Y ) ⊂ PT.

The procedure for obtaining ϕ from f will work when the fibres of µ|Y are
connected and simply connected.

9 Sheaf cohomology

This is an extremely brief description of sheaf cohomology. See [1] for a proper
account.

Given a topological space X, a sheaf over X is another topological space S
with a mapping π : S → X satisfying

1. π is a local homeomorphism,

2. the stalks π−1(x) are abelian groups, and

3. the group operations are continuous.
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If U is open in X we denote by S(U) the abelian group of sections of S over U .
As an example, take holomorphic functions on a complex manifold. Consider

a point z in the manifold and a function element (f,D) such that the domain
D contains z. We define the germ [f, z] of f at z to be all function elements
(fi, Di) such that z ∈ Di and there is a neighbourhood of z on which fi = f .
Then the set of germs is the sheaf O on the manifold.

Now we turn to Čech cohomology, still with our sheaf S. Choose an open
cover {Ui} of X, and simplify the notation for intersections by setting

Uij = Ui ∩ Uj . (38)

A 0-cochain is a collection
{fi ∈ S(Ui)}, (39)

a 1-cochain is a collection

{fij ∈ S(Uij) : fij = −fji}, (40)

a 2-cochain is a collection

{fijk ∈ S(Uijk) : fijk is skew symmetric}, (41)

and similarly for a p-cochain. The set of all p-cochains forms an abelian group
which we denote by Cp({Ui};S).

We have a coboundary map δp : Cp({Ui};S) → Cp+1({Ui};S), a group
homomorphism defined as follows:

δ0({fi}) = {ρjfi − ρifj}, (42)

δ1({fij}) = {ρkfij + ρjfki + ρifjk}. (43)

Here, ρi means restrict to the intersection with Ui. δp is defined similarly,
always in such a way that the result is skew-symmetric. It is easy to check that
δ1 ◦ δ0 = 0, and in fact the skew symmetry implies that δp+1 ◦ δp = 0 for all p.

This gives us a sequence of abelian groups

C0({Ui};S)
δ0−→ C1({Ui};S)

δ1−→ C2({Ui};S)
δ2−→ . . . (44)

in which the image of δp−1 is a normal subgroup of the kernel of δp. We define

Ȟp({Ui};S) =
ker δp
im δp−1

. (45)

Strictly speaking we should now take successive refinements of the cover {Ui} of
X and then the direct limit, in order to remove the dependence on any particular
cover and obtain Ȟp(X;S), the Čech cohomology of X with coefficients in the
sheaf S. But in practice it is usually possible to find a specific cover such that

Ȟp({Ui};S) = Ȟp(X;S). (46)
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Looking back at the contour integral we carried out, we can now see that the
equivalence class of functions all leading to the same field ϕ is simply an element
of Ȟ1({U1, U2};O(−2)), where U1 is the complement of the plane AαZ

α = 0
and U2 is the complement of the plane BαZ

α = 0.
More generally, it can be shown that

Theorem 3

Ȟ1(PT+;O(−2)) ∼= {positive-frequency analytic solutions

of the wave equation} (47)
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Exercise 1. Using (3), calculate

(ct′)2 − (x′)2 − (y′)2 − (z′)2,

and simplify.

Exercise 2. It is easy to see that the range of the mapping (7) is N ∩H. To
show that it is an embedding, note first that if

(x0,
1

2
(1−∆),−1

2
(1 + ∆), x1, x2, x3) = (y0,

1

2
(1−∆),−1

2
(1 + ∆), y1, y2, y3)

then
xa = ya.

So the mapping is injective. Clearly, it is also continuous.

Exercise 3. A generator of N is the set of points

{(λT, λV, λW, λX, λY, λZ) : λ ̸= 0 ∈ C}.

If V − W ̸= 0 we can choose λ = (V − W )−1, and then this point on the
generator will have values of V and W satisfying V −W = 1.

Exercise 4. Substitute V −W = 1 into (6).

Exercise 5. Suppose that Lαβ is simple. Then

Lαβ = XαYβ −XβYα.

Now insert this expression into the left hand side of (15) and simplify.

Exercise 6. Equation (19) can be split into the two equations

ZαXα = 0 and ZαYα = 0,

12



where

Xα =

[
−1, 0,

i√
2
(x0 + x3),

i√
2
(x1 + ix2)

]
Yα =

[
0,−1,

i√
2
(x1 − ix2),

i√
2
(x0 − x3)

]
.

Now set
Lαβ = XαYβ −XβYα,

and then show that

i√
2
(L03 − L12) = x0,

i√
2
(L02 − L13) = x1,

and so on, as required for (7) and (18).

Exercise 7. Suppose that wa = xa − ya is a null vector. Then the rows in(
w0 + w3 w1 + iw2

w1 − iw2 w0 − w3

)
are linearly dependent, so we can find Z2 and Z3 satisfying (21). Now calculate
Z0 and Z1 from (19) or (20). Then Zα lies on both the line corresponding to
xa and the line corresponding to ya.

Exercise 8.

Z0Z2 =
i√
2

[
(x0 + x3)Z2Z2 + (x1 + ix2)Z3Z2

]
Z1Z3 =

i√
2

[
(x1 − ix2)Z2Z3 + (x0 − x3)Z3Z3

]
Z0Z2 =

−i√
2

[
(x0 + x3)Z2Z2 + (x1 − ix2)Z2Z3

]
Z1Z3 =

−i√
2

[
(x1 + ix2)Z3Z2 + (x0 − x3)Z3Z3

]
and hence the result.

Exercise 9. µ−1(Zα) is the space of all pairs {Zα, L} where L is a line in PT
which goes through the point Zα. So it is the space of all pairs {Zα, xa}, where
xa satisfies (19) for the given Zα.

Exercise 10. ν−1(xa) is the space of all pairs {Zα, xa} where Zα lies on the
line in PT corresponding to xa. So it is the space of all pairs {Zα, xa}, where
Zα satisfies (19) for the given xa.
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