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Abstract: We regard generalised twistor diagrams as linear SU(p, q)–equivariant operators on
tensor products of positive ladder representations. We show how a sequential composition of
elementary diagrams effects the algebraic composition of the SU(p, q)–equivariant operators

corresponding to these elementary diagrams.

1 Introduction

1.1 Background and aim of this paper

Twistor diagrams were introduced in [?] as a means to describe conformally invariant scattering
amplitudes of zero–rest–mass fields of various spins in the complex analytic setting. Under the simple
group G = SU(2, 2) — a 4–fold cover of the restricted conformal group of Minkowski space and the
spinor group of SO(2, 4) [?, Chapter 9] — these fields form the so–called ladder representations
[?] which are unitary as singular limits of the holomorphic (and anti–holomorphic) discrete series
of G. They can be realised on analytic cohomology groups of holomorphic line bundles over open
G–orbits of complex projective space P3 ∼ U(2, 2)/(U(1) × U(1, 2)) which in this context is called
(flat) projective twistor space [?]. Various modifications of the original diagram formalism (and
notation) have been proposed, in particular such that the full conformal invariance is broken, in
order to write down more general scattering amplitudes [?]. We refer to [?][?] for an introduction to
twistor diagrams in terms of contours and differential forms and to [?] for a cohomological account.

Here, however, we are concerned with a natural generalisation of twistor diagrams asG–equivariant
operators on tensor products of positive (i.e. holomorphic) ladder representations of G = SU(p, q),
realised on cohomology of line bundles over Pn−1 (n = p+ q). The aim of this paper is to establish
the fact that a sequential composition of twistor diagrams can be defined on the level of closed
differential forms and explicit contours of integration so that the following functorial property is
satisfied:

If
I = ⊗ni=1Ii , J = ⊗ni=1Ji , K = ⊗ni=1Ki (1)

are tensor products of positive ladder representations of G = SU(p, q) and

D1 ∈ HomG(I, J) , D2 ∈ HomG(J,K) (2)

are G–equivariant linear operators on these tensor products, given by diagrams D1, D2 respectively,
then the sequential composition D1D2 effects the operator D2 ◦ D1 ∈ HomG(I,K).

The fact that such a composition on the diagrammatic level should exist has been assumed for
quite some time now, but has never been established rigorously, except in the case p = q = 1.
Our result justifies the construction of projection operators from products (1) into G–irreducibles in
diagrammatic terms by sequential composition of elementary diagrams (double twistor transforms
and box diagrams). We hope, eventually, to present a complete formalism for SU(p, q) in analogy
with Young tableaux for SU(n). So far, some partial results in this direction have been obtained [?].
For example it has been shown that finite linear combinations of diagrams of the form (51), so–called
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box diagrams, are sufficient to project out any given of the countably many irreducible constituents
of a product of two positive ladder representations. Conversely, any box diagram is equivalent to
a finite linear combination of such projections. For more than two factors one is led to consider
a sequential concatenation (65) of elementary diagrams to form what we call a sequential twistor
diagram. It is plausible that finite linear combinations of such sequential diagrams are sufficient to
project out all irreducibles of multiple tensor products of positive ladder representations. This is
known to be the case for SU(1, 1) where there are realisations of all the discrete series representations
on analytic cohomology of degree zero, i.e. on spaces of holomorphic sections [?].

1.2 Outline of the paper

Our representations are realised on cohomology groups of holomorphic line bundles over G–orbits of
projective space. The formalism of twistor diagrams, however, is primarily defined by representative
meromorphic closed forms and contours of integration for these forms which avoid the variety on
which they are singular. Thus two strategies are possible. Either one translates all representatives
and operations on them (such as wedge product, integration etc.) into purely cohomological terms —
such an approach is taken in [?] — or one shows the formalism to apply to preferred representatives of
cohomology elements. Here we shall take this second approach, because otherwise the diagrammatic
nature of the formalism is lost. We work within the Čech frame and represent cohomology elements
with respect to a fixed finite Stein cover of our open orbits. In this way we only get the span
of so–called elementary states which is dense in (the Hilbert space completion of) the respective
cohomology groups (as it corresponds to the K–finite vectors of the representations for a suitable
maximal compact subgroup K ⊂ G) [?]. Nevertheless, we believe that a generalisation of the infinite
Stein cover of [?]1 from the case p = q = 2 to arbitrary p, q would enable us, without change, to
apply our method of integration to arbitrary cohomology elements, represented in a preferred way
according to [?]. We shall come back to this issue later (in subsection 2.3).

We now give an overview of our construction with its two aspects which we treat in parallel. First
we have to define a cycle representing a homology class over which to integrate the meromorphic
closed differential form ω whose singularity structure is represented by a sequential diagram such
as (65). We can describe such a cycle as the product of standard contours (35) and (55) for the
constituents of the sequential diagram. In the product we scale these contours in order to avoid
the singularities of ω, choosing to enlarge them from left to right (66). In fact our descriptions and
calculations are all done non–projectively, i.e. in products of Cn rather than Pn−1 although contours
and differential forms descend to products of projective spaces by integrating out the S1–fibres of

Cn ⊃ S2n−1 −→ Pn−1. (3)

This is convenient, because projectively the cycle for ω does not factor and a scaling condition such
as (66) would be less easy to state. Also, in the process of integration it is essential that we can
divide our variables xn = (xp , xq) ∈ Cp+q into the first p and last q.

Second, once we have an explicit contour we integrate out ω from left to right, except for the
variables xi1p (i = 1, . . . , k) on the very left of (65). Because the factors of our contour increase from
left to right we can always assume that an expansion (34) or (54) exists to the right of our stage of
integration. Modulo an equivalence (∼) up to terms which give zero after the final integration of the
variables xi1p , every integration is shown in (36) to produce the identity for a double twistor transform
(31) or, in (56), a G–equivariant operator D (63) corresponding to a box diagram (51) (multiplied
by some irrelevant non–zero constants). Thus, iteration of these two integration procedures gives
the theorem (73).

The notation is mainly set up in subsection 2.2.

1We thank one of our referees for this reference
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2 Ladder representations of SU(p, q)

2.1 Their cohomological realisation

The discrete series representations of semisimple Lie groups all have ∂̄–cohomological realisations
on holomorphic bundles over homogeneous spaces constructed from these groups [?][?]. Here we
consider the so–called ladder representations of SU(p, q) which are singular limits of the (anti–)
holomorphic discrete series and whose cohomological realisations are particularly simple. There is a
formalism using L2 Dolbeault cohomology for indefinite metrics [?]. However, we shall use a Čech
realisation with elementary states generalising the twistor framework for SU(2, 2) as in [?][?]. Thus
we consider the natural action of SU(p, q) on P+, one of the two open orbits of complex projective
space

Pn−1 ∼ U(p, q)/(U(1)× U(p− 1, q)) (n = p+ q) (4)

defined by
P+ = {[x] ∈ Pn−1 | (x, x) > 0} (5)

where ( , ) is the Hermitian form of signature (p, q) defining G = SU(p, q). In all of the following the
example of SU(1, 1) should be born in mind. To exemplify the construction of elementary states we
start with a special case. Any choice of p linearly independent vectors ai with [ai] ∈ P+ (i = 1, . . . , p)
gives rise to a Čech representative

∏p
i=1(ai, x)−1 of an element in

Hp−1(P+ , ⊗−pH ) (6)

(where H is the sheaf of holomorphic sections of the hyperplane bundle restricted to P+ and H−1
is its dual) as follows. The sets

Ui : = {[x] ∈ Pn−1 | (ai , x) 6= 0 } (7)

are Stein and thus one has a (composition of) Mayer–Vietoris connecting homomorphism(s) δ

δ : H0(∩pi=1Ui , ⊗
−pH ) −→ Hp−1(∪pi=1Ui , ⊗

−pH ) (8)

which maps to zero sections f which can be written as

f = fI − fJ (restricted to ∩pi=1 Ui) (9)

with fI holomorphic in UI = ∩i∈I Ui and fJ holomorphic in UJ with I, J 6= ∅, {1, . . . , p}. Second
one has an injection [?]

i:Hp−1(∪pi=1Ui , ⊗
−pH) ↪→ Hp−1(P+ , ⊗−pH) (10)

by restriction of representatives. The cohomology on the right hand side is actually bigger than the
image of the left hand side due to elements which blow up on ∪iUi − P+. But there is a Hilbert
space closure of this image within the right hand side with respect to a Hermitian inner product,
discussed below. This closure is independent of our choice of [ai] (∈ P+) and we denote it by

Hp−1(P̄+ , ⊗−pH)cl (11)

as it is the closure of the direct limit U → P̄+ of the cohomologies over open U ⊃ P̄+ ⊃ P+. It
carries the unitary ladder representation (π−p , H−p) of SU(p, q).

For any homogeneity2 h ∈ Z an abstract Hermitian inner product 〈 | 〉h can be defined on
Hh
∼= Hp−1(P̄+ , ⊗hH)cl via the so–called generalised twistor transform [?][?]

Th:Hp−1(P̄+ , ⊗hH)cl ∼=−→ Hq−1(P̄∗− , ⊗−h−nH∗)cl (12)

(which is a linear isomorphism) and a natural bilinear pairing

Bh:Hp−1(P̄∗+ , ⊗hH∗)cl ⊗Hq−1(P̄∗− , ⊗−h−nH∗)cl −→ C, (13)

2The case p or q = 1 with h ≥ 0 requires a slight modification. One has to take quotients by global sections. But
we suppress this here.
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such that
〈f |e〉h = Bh(f∗ ⊗ Th(e)) (14)

where f 7→ f∗ is given by complex conjugation which takes a positive/holomorphic ladder represen-
tation to its negative/anti–holomorphic dual.

In the next subsection we generalise our example of the very special element i ◦ δ(
∏p
i=1(ai, x)−1)

in H−p to so–called elementary states of arbitrary homogeneity h (∈ Z). On these it is easy to
describe the action πh of G and to give a generalised twistor diagram with a contour of integration
for a concrete realisation of the Hermitian G–invariant scalar product 〈 | 〉h. The closure of their
span with respect to 〈 | 〉h gives the Hilbert spaces Hh. As a representation space, however, we can
identify Hh with either of the spaces (12).

2.2 Elementary states and their Hermitian inner product

The above construction works for arbitrary (integral) powers of H. Let ai be as before and bj
(j = 1, . . . , q) be linearly independent with [bj ] ∈ P− ((bj , bj) < 0). We call

p∏
i=1

(ai , x)−αi

q∏
j=1

(bj , x)βj (αi , βj ∈ N) (15)

or rather its image under i ◦ δ in

Hp−1(P̄+ , ⊗hH)cl (h := h1 − h2 ; h1 := Σβj , h2 := Σαi) (16)

an elementary state of homogeneity h based on ai, bj . In order for this image not to be cohomologous
to zero one needs αi > 0 (i = 1, . . . , p), see (9). If ai, bj are understood to be held fixed then we can
define coordinates

xi := (ai , x) , xp+j := (bj , x) (i = 1, . . . , p ; j = 1, . . . , q) (17)

and we write
xβq
xαp

or
[xq]h1

[xp]h2

with α = (α1 . . . , αp) , β = (β1 . . . , βq) (18)

for (representatives of) elementary states based on ai, bj , depending on whether we want to be
specific about the multi–exponents α, β or not. (Thus we use bold face indices xi for concrete
indices whereas xp, xq stand for any of the variables x1, . . . , xp or xp+1, . . . , xp+q, respectively, and
xn or x for either.) The action of G on these states is then induced from the natural action of G on
ai, bj , see subsection 2.3. From now on we shall drop the distinction between elementary states and
their representatives which are unique for fixed ai, bj if αi > 0.

In the following we shall fix ai, bj such that

+(ai , ai) = −(bj , bj) = 1 (19)

and all other inner products are zero. Elementary states based on such ai, bj span the K–finite
vectors for a corresponding choice of maximal compact K ⊂ G. For z ∈ P∗ we set

zi := (z̄ , ai) , zp+j := −(z̄ , bj) (20)

such that

(x · z) := (z̄ , x) =

n∑
k=1

xkzk . (21)

We abbreviate

(x · z)p :=

p∑
i=1

xizi and (x · z)q :=

q∑
j=1

xp+jzp+j (22)

and similarly

|xp| := (

p∑
i=1

xix̄i)
1/2 and |xq| := (

q∑
j=1

xp+jx̄p+j)
1/2 . (23)
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If we have an elementary state e ∈ Hh and a dual elementary state f∗ ∈ H∗h realised as

e =
[xq]h1

[xp]h2

∈ Hp−1(P̄+ , ⊗hH)cl , f
∗ =

[zq]g1
[zp]g2

∈ Hp−1(P̄∗+ , ⊗hH∗)cl (24)

with h = h1 − h2 = g1 − g2 then the Hermitian inner product 〈f |e〉h is represented by a diagram

[xq]h1

[xp]h2

s c [zq]g1
[zp]g2

(25)

which denotes a differential form

e ω f∗ =
[xq]h1

[xp]h2

dnxdnz

(x · z)r
[zq]g1
[zp]g2

. (26)

Originally [?], a twistor diagram was regarded as defining a differential form together with a contour
or, in some cases, a small number of contours. For this diagram there is in fact only one homology
class which respects the two elementary states at either end as cohomology classes, see the remark
after (16), so the question does not arise yet. But in any event, we do not in this article regard
the contour as being specified by the diagram. Also, one often writes r − 1 over the line in (25)
to indicate the power of the pole [?]. However, we omit this since it suffices for our diagrams to
reflect the singularity structure of the differential forms. We choose r = n + h so that we have
total homogeneity zero in the variables x and z. If necessary we increase q to ensure r ≥ 1. This
is straightforward since the elementary states (15) for SU(p, q) inject into the elementary states for
SU(p, q′) for any q′ ≥ q, by setting βj = 0 for j > q.

Now we can describe a standard 2n–dimensional contour C × (S1)2p over which to integrate the
closed differential form e ω f∗:

C × (S1)2p =

{
(x, z) ∈ C2n

∣∣∣∣ |xi| = |zi| = ρ (i = 1, . . . , p)
|xq| = 1 , zq = eiφx̄q; φ ∈ [0, 2π]

}
(27)

with 0 < ρ < p−1/2 to avoid the zeros of the denominator of (26). Integration of e ω f∗ over this
contour gives a G–invariant Hermitian scalar product 〈f |e〉h of elementary states (times multiples
of 2πi). In the remaining sections we shall always use double twistor transforms T−h−n ◦ Th ∼ Id
and thus dual elementary states f∗ ∈ H∗h ∼= Hq−1(P̄− , ⊗−h−nH)cl.

2.3 Twistor diagrams as SU(p, q)–equivariant operators

In this subsection we explain how twistor diagrams give rise to G–equivariant operators. On an
elementary state such as (15) the action of an element g ∈ G is given by

(ai , x) , (bj , x) 7→ (gai , x) , (gbj , x) (28)

where ai 7→ gai is the standard action of G on Cp+q. At least for g close to the identity we can
then re–expand the resulting elementary state (based on gai, gbj) into an infinite sum of elementary
states (16). By (9), terms with at least one of the αi ≤ 0 in this expansion are cohomologous to
zero. Similarly, for dual elementary states, realised as in (24) we take the dual action

(z̄ , ai) , (z̄ , bj) 7→ (z̄ , gdai) , (z̄ , gdbj) (29)

defined by (gc , gdd) = (c , d), ∀c, d ∈ Cn. Thus, by the G–invariance of ( , ), gd = g ∀g ∈ G.
A (generalised) twistor diagram D evaluated between k elementary states and k dual elementary

states gives rise to complex numbers cD which we associate with a multilinear operator D in the
natural way: 〈

⊗kj=1fj |D| ⊗ki=1 ei
〉

:= cD(⊗ki=1ei , ⊗kj=1f
∗
j ). (30)

The fact that D is G–equivariant follows from the integrand being a product of powers of G–invariant
inner products ( , ) and the fact that the g–shifted contour of integration for the closed integrand
is homologous to the original contour for g close to the identity.

5



Finally we remark that of course one would like to evaluate twistor diagrams on arbitrary coho-
mology elements as opposed to special elementary states with respect to a fixed finite Stein cover
only. In [?] preferred Čech representatives of general cohomology elements are constructed with
respect to a fixed infinite cover U for the case p = q = 2. The open Stein sets Ux in U are indexed
by the points x ∈ P+ with the property that x /∈ Ux. For arbitrary elements in (16) (with p = 2)
preferred Čech cochains {fuv(x)} are given with fuv(x) defined on Uu ∩Uv varying holomorphically
in u, v (and x). The evaluation (as a space–time field) of such a cochain is by integration essentially
of fuv(x) around u and v after restriction to the line through u and v. We believe that this construc-
tion generalises exactly to our case at hand for general elements in (16) (p arbitrary, fixed). Thus,
we expect in general to have preferred representative cochains {fI(x)} (indexed by ordered p-tuples
of p linearly independent points ∈ P+) with respect to a Stein cover {UJ} (whose sets are indexed by
all sets J of p− 1 linearly independent points ∈ P+ and do not contain the (projective) span 〈J〉 of
these points) such that fI(x) are defined on the intersection ∩JUJ , where J ranges over all subsets
of p − 1 points from I, and fI(x) varies holomorphically in the points of I (and x). Evaluation
of the cochain at 〈K〉 amounts to choosing I with 〈I〉 = 〈K〉, restricting fI to 〈I〉 and integrating
around the p hyperplanes 〈J〉 within 〈I〉. To sum up, we believe that a construction of preferred
representatives for general cohomology elements exists which allows evaluation by integration over
the same contours as we define for elementary states. Furthermore, the fact that such an evalua-
tion of a twistor diagram on these representatives gives G–equivariant operators independent of all
further choices (up to multiplicative factors) can be inferred from the properties of the differential
form associated with the diagram under the Casimir operators of G. We do not feel, however, that
these issues contribute to the understanding of the sequential composition of diagrams and thus we
shall refrain here from elaborating these points any further.

3 Double twistor transform and box diagrams

In this section we look at two special types of diagrams from which we build up a general sequential
diagram in the next section: these are the double twistor transform and the box diagrams. For both
of them we give standard cycles over which to integrate the closed differential forms represented by
the diagrams. The choice of homology classes is in fact very small. If we assume we have elementary
states at the ends of a diagram as in (25) we integrate over circles S1 around their poles as in (27).
This ensures that the integral is a functional on the cohomology groups (16) as it gives zero on
coboundaries (9). The remaining part of the contour is then necessarily homologous to (35) (or to
zero) in the case of the double twistor transform whereas for the box diagram there is a second
generator besides (55) [?]. The standard contour of an arbitrary sequential diagram will then be
the product of these standard contours of its constituent basic diagrams, suitably scaled to avoid all
singularities.

3.1 The double twistor transform

We look at a diagram which has singularity structure

x s cz su (31)

and which thus corresponds to a differential form

dnx dnz dnu

(x · z)r1(u · z)r2
with r1 + r2 = n, ri ≥ 1. (32)

We assume that we have an elementary state

[xq]h1

[xp]h2

(33)

to the left of the diagram and to the right a function f(u) which can be expanded into an absolutely
convergent sum

f(u) = f(up, uq) =

∞∑
h3=0

Ph3(up)/Qr+h3(uq) (34)
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for up, uq inside a certain domain of the form |up| < ρ3|uq| (ρ3 > 1). Here Ph3(up) and Qr+h3(uq)
denote polynomials in the variables up and uq of homogeneity h3 and r + h3 (r ≥ 1) respectively.
In fact we will always have homogeneity zero in all variables (n = h2 − h1 + r1 = r + r2) but we do
not need to impose this for the following. Our aim is to show that integration of the variables zn,
xq and up over the standard 2n−dimensional contour S defined by

S =

{
(xq, z, up) ∈ C2n

∣∣∣∣ zq = ρ1e
iφx̄q , up = ρ2e

iψ z̄p ,
|xq| = |zp| = 1 ; φ, ψ ∈ [0, 2π]

}
(35)

with 1 < ρ1 < ρ2 < ρ3 will leave us with something equivalent to the elementary state (33) times
the function f (34). More precisely, we want to show:

Lemma 1

dpxp
[xp]h2

[∫
S

[xq]h1

dqxqd
nznd

pup
(x · z)r1(u · z)r2

f(up, uq)

]
dquq ∼ κ ·

[uq]h1

[xp]h2

f(xp, uq)d
pxpd

quq . (36)

By equivalent (∼) we mean that after integration of the variables xp along (S1)p = ×pi=1{|xi| = ρ},
with ρ small enough (< p−1/2) to justify the expansion (38), we get the same differential form.
(However, notice that we do not perform this integration.) It will actually turn out that the constant
κ only depends on r1, r2, p and q. Thus the double twistor transform (31) is a multiple of the identity,
a fact which is of course well known [?] and follows more or less immediately from the G–invariance of
the integral. However, we choose here to give a computational proof, because much of the argument
will be of use when we consider box diagrams. The abundance of variables, here and in (57), should
not cloud the fact that all we are really using in the process of integration is Cauchy’s theorem in
one form or another, for example∫

|xk|=1

(z1x̄1 + . . .+ zmx̄m)r xsk
dxk
xk

= ±2πi× coefficient of x̄sk in (z1x̄1 + . . .+ zmx̄m)r. (37)

The “radial” integrations just contribute to the overall constant κ to give G–invariant expressions.
They do not interest us here.

Proof: We expand

(x · z)−r1(u · z)−r2 =

∞∑
n1,n2=0

ar1(n1) ar2(n2)
(x · z)n1

p (u · z)n2
q

(x · z)r1+n1
q (u · z)r2+n2

p

(38)

which converges absolutely in a neighbourhood of |uq| ≤ 1 and of S×(S1)p chosen as above. Thus, for
xp and uq within the described range we may interchange the integration in (36) with the expansions
(34) and (38) and consider one term at a time whose relevant part looks like:

dpxp
[xp]h2

∫
S

[xq]h1

(x · z)n1
p (u · z)n2

q Ph3
(up)d

qxqd
nznd

pup

(x · z)r1+n1
q (u · z)r2+n2

p

=
dpxp
[xp]h2

∫
S

[xq]h1

(x · z)n1
p (u · x̄)n2

q Ph3
(z̄p)d

qxqd
nznd

pup

(ρ1eiφ)r1+n1−n2(ρ2eiψ)r2+n2−h3
.

(39)

Now, since

dpzpd
pup|S = (ρ2e

iψ)p
dz1
z1
∧ . . . ∧ dzp

zp
∧ d(z1z̄1) ∧ . . . ∧ d(zp−1z̄p−1) ∧ de

iψ

eiψ
(40)

and similarly for dqxqd
qzq, integration of φ, ψ gives zero unless

r1 + n1 = n2 + q and r2 + n2 = h3 + p (41)

in which case, with r1 + r2 = p+ q (32), we get ±(2πi)2×

dpxp
[xp]h2

∫
[xq]h1

(x · z)h3
p (u · x̄)h3+p−r2

q Ph3
(z̄p)(

dz1
z1
∧ . . . ∧ d(xn−1x̄n−1)) . (42)

7



We can see now that after integration of xp around (S1)p we only get something possibly non–zero
for h3 = h2 − p and in this case only the monomial proportional to

[xp]h2

x1 . . . xp
in (x · z)h3=h2−p

p (43)

can contribute, by Cauchy’s theorem. Parametrising further

z1 = r1e
iψ1 , z2 =

√
1− r21 r2 eiψ2 , . . . , zp =

√
1− r21 . . .

√
1− r2p−1 eiψp (44)

we obtain
±dpzpdpup|S = (ρ2e

iψ)p(1− r21)p−2(1− r22)p−3 . . . (1− r2p−2)×

×de
iψ1

eiψ1
∧ . . . ∧ de

iψp

eiψp
∧ dr21 ∧ . . . ∧ dr2p−1 ∧

deiψ

eiψ
(45)

and integration of the angular variables ψ1, . . ., ψp replaces the various monomials in Ph3(z̄p) by some
constants (coming from binomial coefficients and the radial variables) times the same monomials in
the variables xp, according to (37). But as we have seen in (43), after integration of xp only one such
monomial can contribute. Therefore we may replace Ph3

(z̄p) by Ph3
(xp) (times the corresponding

constant) or indeed replace f(up, uq) by f(xp, uq) (times that constant).
Similarly and again with (37), the angular integrations of xq in (42) force

h1 = n2 = h3 + p− r2 = h2 − r2 = h2 + r1 − n (46)

(i.e. total initial homogeneity zero in the variables xn in (36)) and in this case replace [xq]h1
by some

constant times [uq]h1
.

This proves our Lemma. However, for the sake of completeness we now also perform the radial
integration to show that κ does not depend on the particular elementary state [xq]h1/[xp]h2 . Consider
one monomial with multi–exponent α = (α1, . . . , αp) from the expansion

(x · z)n1
p =

∑∑
αi=n1

(
n1
α

)
xαp z

α
p . (47)

With (44) and (45), writing ri for r2i ∈ [0, 1], we obtain the integral of radial variables (xαp×)

(
n1
α

)∫ p−1∏
i=1

rαi
i (1− ri)αi+1+...+αp+p−1−idr1 ∧ . . . ∧ drp−1 (48)

which can be evaluated as n1!/(n1 +p−1)! independent of α, and similarly for (u ·z)n2
q . Multiplying

by ar1(n1)ar2(n2) (38) we get, with (41) and (46),

(−1)n1+n2

(
n1 + r1 − 1
r1 − 1

)
n1!

(n1 + p− 1)!
·
(
n2 + r2 − 1
r2 − 1

)
n2!

(n2 + q − 1)!
= (−1)p−r2/(r1−1)!(r2−1)!.

(49)
As there are n+ 2 angular integrations we end up with

κ = ±(2πi)2+n(−1)p−r2/(r1 − 1)!(r2 − 1)! (50)

in (36), independent of the elementary state (33).2

Thus we have verified that the double twistor transform is equivalent to (κ times) the identity
in the sense of (36). To stress again the essential point: for a fixed elementary state only one
up–monomial in the expansion (34) of f(up, uq) can possibly contribute after integration of xp.
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3.2 Box diagrams

The box diagram (with a pair of twistor transforms attached to it) has singularity structure

r
@
@
@
@@

b
r���

��

b
x

y

z r u
w r v

(51)

and corresponds to a differential form

dnx dny dnz dnw dnu dnv

(x · z)r1(y · z)r2(u · z)r3(x · w)s1(y · w)s2(v · w)s3
with

r1 + r2 + r3 =
s1 + s2 + s3 = n

(52)

and ri, si ≥ 1. Here we assume that we have elementary states

[xq]h1

[xp]h2

and
[yq]k1
[yp]k2

(53)

on the left of the diagram and functions

f(u) = f(up, uq) =
∑∞
h3=0 Ph3

(up)/Qr+h3
(uq)

g(v) = g(vp, vq) =
∑∞
k3=0 Sk3(vp)/Rs+k3(vq)

(54)

on the right with convergence properties as for (34). Again we only need the case where we have
in fact total homogeneity zero in each variable. As the standard 4n–dimensional contour for a box
diagram we choose

B =


|xq| = |yq| = |zp| = |wp| = 1, (x · ȳ)q = 0

(xq, yq, z, w, up, vp) zq = ρ1(eiφ1 x̄q + eiφ2 ȳq) , up = ρ2e
iφ3 z̄p , φi ∈ [0, 2π]

∈ C4n wq = ρ1(eiψ1 x̄q + eiψ2 ȳq) , vp = ρ2e
iψ3w̄p , ψi ∈ [0, 2π]

 . (55)

We now need 2ρ1 < ρ2 in order to ensure absolute convergence of the expansions of (u ·z)r3 , (v ·w)s3

if we assume |uq| ≤ 1 as in the proof of Lemma 1, see (38). This time our aim is to show:

Lemma 2 The integration of the product of the elementary states (53) with the form (52) and
the product of f and g (54) over B gives a result equivalent to a finite linear combination of products

[uq]h̃1

[xp]h̃2

[vq]k̃1
[yp]k̃2

(56)

times f(xp, uq)g(yp, vq)d
pxpd

quqd
pypd

qvq.

By equivalent here we mean equality after integration of xp, yp around (S1)2p. It will actually

turn out that h̃i + k̃i = hi + ki (i = 1, 2) but we do not need this here, see (63),(64).

Proof: We write down the essential part of one term of the integrand restricted to B after the
expansions (38) have been made throughout:

[xq]h1

[xp]h2

[yq]k1
[yp]k2

(x · z)n1
p (y · z)n2

p (x · w)m1
p (y · w)m2

p (u · z)n3
q (v · w)m3

q Ph3
(up)Sk3(vp)

(x · z)r1+n1
q (y · z)r2+n2

q (x · w)s1+m1
q (y · w)s2+m2

q (u · z)r3+n3
p (v · w)s3+m3

p

=
[xq]h1

[xp]h2

[yq]k1
[yp]k2

(x · z)n1
p

(ρ1eiφ1)r1+n1

(y · z)n2
p

(ρ1eiφ2)r2+n2

(x · w)m1
p

(ρ1eiψ1)s1+m1

(y · w)m2
p

(ρ1eiψ2)s2+m2
×

×
ρn3
1 (u · (eiφ1 x̄+ eiφ2 ȳ))n3

q

(ρ2eiφ3)r3+n3

ρm3
1 (v · (eiψ1 x̄+ eiψ2 ȳ))m3

q

(ρ2eiψ3)s3+m3
(ρ2e

iφ3)h3Ph3(z̄p)(ρ2e
iψ3)k3Sk3(w̄p).

(57)
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As in the case of the double twistor transform, integration of φ3, ψ3 and angular integration of
the variables zp, wp, up, vp (z̄p, w̄p) with parametrisations as in (40),(44) gives zero unless various
homogeneity relations are satisfied, such as

r3 + n3 = h3 + p and s3 +m3 = k3 + p ,
n1 + n2 = h3 and m1 +m2 = k3 .

(58)

Furthermore, we have equivalence to zero (∼ 0) unless

n1 +m1 = h2 − p and n2 +m2 = k2 − p . (59)

From these equations we already conclude that only for finitely many ni, mi (i = 1, 2, 3) and h3, k3
we can possibly get something not ∼ 0. In particular we can set h2 + k2 = 2p+ h3 + k3. Integration
of zp and wp replaces the arguments of Ph3

and Sk3 by xp and yp combined and we have to partition
them again in order to obtain the desired form. Assume that we have

[xp]h2
= x1+a11 . . . x

1+ap
p = x1 . . . xp x

a
p and [yp]k2 = y1+b11 . . . y

1+bp
p = y1 . . . yp y

b
p (60)

with multi–exponents a = (a1, . . . , ap) and b. Thus, all the pairs of monomials z̄αp , w̄βp in Ph3
and

Sk3 satisfying the multi–exponent relations α+ β = a+ b may lead to terms not ∼ 0. For clarity let

us consider one fixed pair of variables, x1 and y1 say. Integration of z1, w1 then replaces z̄α1
1 , w̄β1

1

by various monomials

z̄α1
1 7→ xγ1y

δ
1 and w̄β1

1 7→ xε1y
ζ
1 with γ + δ = α1 and ε+ ζ = β1 . (61)

But the result is equivalent to zero unless γ + ε = a1 and δ + ζ = b1. Thus we simply rewrite the
resulting products

xγ1y
δ
1

x1+a11

xε1y
ζ
1

y1+b11

=
1

x1y1
=

xα1
1

x1+α1
1

yβ1

1

y1+β1

1

(62)

and conclude that in general the exponents αi, βj of the denominators on the right hand side
determine at most one monomial uαp and vβp in (54) against which the integral may be inequivalent

to zero (and, a fortiori, h2 + k2 = h̃2 + k̃2). It is clear that integration of the remaining variables
φi, ψi (i = 1, 2) and xq, yq, zq, wq (x̄q, ȳq) leaves us with a finite linear combination of monomials
in uq, vq in the numerator which proves the Lemma. 2

However, a thorough evaluation (which is more involved because of the restriction (x · ȳ)q = 0 on B)
actually exhibits multi–exponent relations of the same kind as for the denominator. Thus one finds
that integration of the box diagram over B is equivalent to a map of elementary states

D :
xcq
xap

ydq
ybp
7−→

∑
α+ β = a+ b
γ + δ = c+ d

κ(a, b, c, d, α, β, γ, δ)
xγq
xαp

yδq

yβp
(63)

where a, . . . , δ are multi–exponents and the constants κ are such that we get a G–invariant map. It
preserves the sums of the exponents of xi and yi which give the weight of the corresponding K–finite
vector. This is a more precise version of Lemma 2. Hence, from now on we regard box diagrams
such as (51) as G–equivariant maps

D:Hh ⊗Hk −→ Hh̃ ⊗Hk̃ with h+ k = h1 − h2 + k1 − k2 = h̃+ k̃ (64)

which by Schur’s lemma are multiples of the identity on each irreducible summand.
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4 Sequential twistor diagrams

We now consider diagrams which are composed of double twistor transforms and box diagrams in a
sequential manner, e.g.

xk1

x31

x21

x11

zk1

z31

z21

z11

xk2

x32

x22

x12

xk l+1

x3 l+1

x2 l+1

x1 l+1

r b
r b
r b
r b

r b
r b
r b
r b

r r
r r
r r
r r

�
�
�
��

@
@
@
@@

�
�
�
��@

@
@
@@

p p p p p pppp
p p p p p pppp

p p p p p pppp p p p p pp p p p p
p p p p pp p p p p

p p p p pp p p p p
p p p p pp p p p p

pppp
pppp
pppp
pppp

...
...

. . .

. . .

. . .

. . .
(65)

We denote the variables on the k(l+ 1) black vertices by xij where i and j are the indices of the row
and column, respectively, where they appear. Similarly, the variables on the kl white vertices are
denoted by zij . The standard contour for such a general sequential diagram will be the product of
the standard contours of its constituents as described in the last section, but with radii increasing
from left to right. Thus, all the double twistor transforms and box diagrams which occur in the
column with index j will be integrated over contours S and B defined as in (35) and (55) with the
obvious substitution of variables. In addition we replace ρ1, ρ2 by ρ2j−1 and ρ2j (j = 1, . . . , l) and
set

1 < ρ1 <
′ ρ2 < . . . < ρ2l−1 <

′ ρ2l (66)

where ρ2j−1 <
′ ρ2j stands for 2ρ2j−1 < ρ2j . This allows us to make all the power series expansions

as in the proofs of the lemmata, see (38) and the remark after (55). We may also assume, when we
integrate the diagram from left to right, column by column, up to and including column j(< l), that
the remaining part of the diagram is a product of functions

f(xi j+1) = ((xi j+1 · z)p + (xi j+1 · z)q)−r (r ≥ 1) (67)

which have expansions (34) with z = zi j+1 or z = zi±1 j+1 depending on whether to the right of the
vertex xi j+1 we have a double twistor transform or a box diagram: the variable z will be restricted
as in (35) or (55) to

|zp| = 1 , zq = ρ2j+1e
iφx̄i j+1

q (+ρ2j+1e
iψx̄i±1 j+1

q for box) (68)

and
|xi j+1
p | = ρ2j (j > 0) , |xi j+1

q | = 1 (j < l) . (69)

Therefore we have absolute convergence of the expansions (34) for the functions (67) (note (xi j+1 ·
x̄i±1 j+1)q = 0 for box diagrams). On the far right (j = l) we finally have (dual) elementary states

f∗i (xi l+1) =
[xi l+1
p ]gi1

[xi l+1
q ]gi2

(i = 1, . . . , k) (70)

where the question of convergence does not arise. Thus we can integrate a sequential diagram column
by column, from left to right, thereby replacing elementary states according to (36) or finite linear
combinations of (56) depending on the part of the diagram being a double twistor transform or a
box. Eventually we shall obtain a finite linear combination of products of k pairs of elementary
states and dual elementary states

[xi l+1
q ]hi

1

[xi1p ]hi
2

·
[xi1p ]gi1

[xi l+1
q ]gi2

. (71)
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These we integrate around a product of circles ((S1)p× (S1)q)k defined by |xi1i | = ρ and |xi l+1
j | = ρ′

(i = 1, . . . , p, j = p+ 1, . . . , p+ q) with ρ < 1/
√
p and ρ′ < 1/

√
q to justify the expansions (38) also

at the ends (j = 1, l).
We have therefore shown the following

Theorem
Let ω be a differential form defined by a k× l sequential twistor diagram (65) composed of double

twistor transforms and box diagrams and let n = p+ q be the dimension of the vertex variables. Let
Di i+1
j denote the corresponding map (64) if there is a box diagram in column j and rows (i, i + 1)

of the sequential diagram and let Iij denote the (multiple of the) identity corresponding to a double
twistor transform in column j and row i. Let Dj be the tensor product of all these maps occurring
in column j of the sequential diagram,

Dj = . . .⊗Di i+1
j ⊗ . . .⊗ Ii

′

j ⊗ . . . (j = 1, . . . , l) , (72)

and let D = Dl ◦ . . . ◦ D1 denote the algebraic composition of the maps Dj.
Then there exists a constant κ and a standard cycle C of dimension 2kln which is a product of

the standard cycles for the double twistor transforms and box diagrams occurring in the sequential
diagram, such that

κ

∮
C×(S1)kn

(Πk
i=1ei)ω (Πk

i=1f
∗
i ) =< ⊗ki=1fi | D | ⊗ki=1 ei > (73)

for any choice of k (dual) elementary states ei and f∗i (i = 1, . . . , k) on the k + k exterior vertices.
2

5 Concluding remarks

We have established the expected relation between sequentially composed elementary twistor dia-
grams and the algebraic composition of the corresponding G–equivariant maps. This required in
particular a description of a suitable cycle for integration. It seems natural that such a cycle should
— at least when described non–projectively — be a product of cycles for the constituent elementary
diagrams. Of course, for any cycle the resulting integral is G–invariant. But it need not, even if
cohomology classes of exterior states are respected, have an interpretation (30) as a G–equivariant
map as it might not be defined on all of (1). One way to break full G–invariance is to allow for
cycles with boundaries at prescribed subvarieties, such as the line representing space–time infinity
in the classical twistor picture (p = q = 2) [?].

In representation theoretical terms our calculation was facilitated by the fact that products of
positive ladder representations decompose into discrete series with finite multiplicities and thus
each weight space is finite dimensional which makes the maps (64) essentially combinatorial. One
might now search for standard diagrams which project out irreducibles of such products and thus
provide “Young tableaux” for SU(p, q), a study begun in [?]. For example the diagram (51) with
r1 = r2 = s1 = s2 = 1 and r3 = s3 = p projects out the lowest irreducible of H−p ⊗ H−p for any
SU(p, q) with q ≤ q′ = 2 and there are straightforward extensions to all q′.

There is also the possibility of composing diagrams in a vertical or, in physical terms, space–
like direction. As the tensor product of positive and negative ladder representations have both
continuous and discrete summands [?] the description of such compositions will require considerably
more analysis.

Finally we would like to remark that an alternative proof of our theorem would establish the
equivalence of one of the bonds p p p p pp p p p p zi j s cxi j+1p p p p p p p p p p (74)

in the sequential diagram with summation over a complete orthonormal set of elementary states
times their dual when integrated over zi jp , xi j+1

p . This is straightforward in the case p = 1 [?] and
for p = 2 such an integration can be interpreted as being over a compactified space–time of type

12



S3 × S1, see (35),(55). But in any event a global description of a cycle is needed to justify power
series expansions.
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