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Abstract

In Twistor Conformal Field Theory the Riemann surfaces and holomorphic functions of two-dimensional
conformal field theory are replaced by “flat” twistor spaces (arising from conformally-flat four-manifolds)
and elements of the holomorphic first cohomology. The analogue of a Laurent Series is the expansion of
a cohomology element in “elementary states” and we calculate the dimension of the space of these states
for twistor spaces of compact hyperbolic manifolds. Our method follows the strategy used in the classical
problem of calculating the number of meromorphic functions with prescribed poles on a Riemann surface.
We express the problem globally (in terms of the cohomology of a blown-up twistor space), calculate the
holomorphic Euler characteristic of this blown-up space, and then use some vanishing theorems to isolate
the first cohomology term.

1 Introduction

In two-dimensional conformal field theory the interactions of quantum field theory are determined by
the intrinsic properties of complex manifolds instead of by equations or action principles. There one has
Riemann surfaces X with boundary ∂X the union of p positively oriented S1’s and q negatively oriented
S1’s, and a “Hilbert space representation” ρ yielding

ρ(S1) = H

and
ρ(X) : H⊗p ⊗H⊗q → C

(among other things, such as the contraction operation) for a given Hilbert space H.

There are two possible generalisations of this [20], depending on whether we are thinking of the con-
formal or complex structure of the surfaces X : (i) conformally-flat Riemannian four-manifolds M with
∂M the disjoint union of round S3’s, or (ii) “flat” twistor spaces Z with ∂Z C-R equivalent to the disjoint
union of PNs.
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Definition 1.1 Z is flat if and only if it is the twistor space of a conformally flat four-manifold (which is
the case if and only if each point in Z has a neighbourhood biholomorphic to the neighbourhood of a line
in CP3).

We can think of (i) above as the real case of (ii), namely when Z is fibred by a subfamily M of lines with
a Riemannian self-dual conformal structure. So we focus on (ii), which was first suggested in [11] (see
also [17]). In the two-dimensional conformal field theory the construction of ρ starts with the space H of
L2 spinors on S1 with the usual polarisation H = H+ ⊕ H− (given by continuation into the northern or
southern hemisphere). Then ρ(X) depends on the properties of the projections

O(X) ⊂ C∞(∂X)→ H+,H−.

In the twistor case we have already got a space of fields associated with each boundary component:
H1(PN;O(−2s− 2)) is isomorphic to the space of smooth spin s fields on compactified Minkowski space
[1, 2]. We also have a polarisation:

H1(PN;O(−2s− 2)) = H1(P
+

;O(−2s− 2))⊕H1(P
−

;O(−2s− 2))

(which one can obtain using the Mayer-Vietoris sequence on the cover P
+
,P
−

of CP3). We thus have the
Hilbert space of states ρ(PN) = H1(PN;O(−2s − 2)) and a polarisation. (Note how neatly the latter
arises.) How would ρ(Z) provide us with a functional on the various incoming and outgoing fields? We
follow the example of the two-dimensional conformal field theory and study the map

i∗ : H1(Z;O(−2s− 2))→ H1(∂Z;O(−2s− 2)).

It is shown in [20] that i∗ is injective and that its projections onto the positive and negative frequency
parts are of the required type. This is done by using the analogue of the expansion in Laurent series of a
function on a Riemann surface. This analogue is the expansion in elementary states.

ω ε H1(CP3 − L;O(m)) implies that ω = Σr,s>0
Ar,s(z2, z3)

(z0)r(z1)s
,

where Ar,s is a homogenous polynomial of degree r + s+m.

An elementary state is, by definition, a finite linear combination of the terms in ω; we say it is “based
on L”, and because

H1(CP3 − L;O(m))→ H1(P+;O(m))

is injective we can regard it as being in the latter group. In fact the elementary states are dense in
H1(PN;O(m)), those based on a line in P− being dense in H1(P

+
;O(m)) and vice versa [4]. They have

long been used as a powerful calculus in twistor theory, especially in the study of twistor diagrams [12, 16].

In this paper we calculate the dimension of the space of elementary states based on a line with a
prescribed order of “codimension-two” singularity there. (A summary of the result and the methods used
has already appeared [14].) The line, L, is not in CP3 but is sitting in one of our flat twistor spaces Z.
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The corresponding calculation for L in CP3 was done in [3], using the following characterisation of the
elementary states.

For the moment let Z̃ be CP3 blown up along the line L, and let O(a, b) be the restriction to Z̃ of
O(a)×O(b) on CP3 ×CP1. Then there is a restriction map

ρ : H1(Z̃;O(a, b))→ H1(CP3 − L;O(a+ b))

which is injective, and whose image is precisely the elementary states based on L, so long as a ≥ 0 and
b ≤ −2. These elementary states have a singularity of order up to −b− 1. They are

Σr,s>0; r+s≤−b
Ar,s(z2, z3)

(z0)r(z1)s

(for L given by z0 = z1 = 0). It is also true for a general compact flat twistor space Z that

ρ : H1(Z̃;O(a, b))→ H1(Z − L;O(a+ b))

is injective, and we adopt as a working definition of elementary states (justified in the next section) the
elements of H1(Z̃;O(a, b)).

There is an important alternative motivation for studying these elementary states. A classical problem
on compact Riemann surfaces is to ask how many linearly independent meromorphic functions there are
on X which have poles of order at most ni at Pi and no others. The solution is in three parts. (i) Let D
be the divisor ΣniPi and let [D] be its line bundle. The problem is now to find dimH0(X; [D]). (ii) Use
the Riemann-Roch theorem:

dimH0 − dimH1 = degD + 1− g.

(iii) Use the Kodaira vanishing theorem: if degD > 2g − 2 then H1(X; [D]) = 0. We follow a similar
strategy in this paper.

(i) We convert our problem into a global one by showing, in section 2, that the space H1(Z̃;O(a, b))
does indeed characterise elementary states, so that the above definition is the correct one. We will then
need to calculate dimH1(Z̃;O(a, b)).

(ii) An earlier version of this work [13] used the Hirzebruch-Riemann-Roch Theorem to calculate
χ(Z̃;O(a, b)) in terms of Chern classes on Z̃, and then a theorem of Porteous [9] to relate these to char-
acteristic classes on Z. There is a simpler method for calculating χ, however, which was pointed out to us
by Claude LeBrun, and which we use in section 3.

(iii) Given χ we know the alternating sum of the dimensions of the cohomology groups on Z̃, and the
last step is to show that H3 = H0 = 0 and to calculate dimH2. This is done in section 4, using a vanishing
theorem proved in [15].

We are very grateful to Michael Singer and Paul Tod for their invaluable help throughout this work,
and to Claude LeBrun and Sergey Merkulov for their help in the latter stages. The first author would
like to thank St John’s College, Oxford, and the second author would like to thank the Erwin Schrödinger
Institute, Vienna, for their hospitality during the preparation of this work.
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2 Codimension-two Poles on Flat Twistor Spaces

The extension of the notion of a codimension-two pole from CP3 to a general flat twistor space Z, will
require a line bundle on Z̃ which coincides with O(a, b) when Z̃ is CP3 blown-up along a single projective
line. We shall define this line bundle for a general twistor space which need not be flat (but must if m
is odd satisfy a topological condition – the vanishing of the Stiefel-Whitney class in H2(Z,Z2) – in order
that O(κ−

m
4 ) is well defined). We give the definition in terms of sheaves.

Definition 2.1 Let Z be a compact twistor space and let L1, . . . , Ls be pairwise non-intersecting lines in
Z. Let Z̃ be the manifold Z blown-up along L1 ∪ . . . ∪ Ls, and let the exceptional divisor be E1 ∪ . . . ∪Es.
Let I1, . . . , Is be the ideal sheaves of E1, . . . , Es respectively. Let m be any integer and let (ai, bi), for
i = 1, . . . , s, be pairs of integers with ai + bi = m. Then we define the sheaf O(a1, . . . , as; b1, . . . , bs) by

O(a1, . . . , as; b1, . . . , bs) = I⊗b11 ⊗ . . .⊗ I⊗bss ⊗$∗O(κ−
m
4 ) (1)

where κ is the canonical bundle of Z and $ is the blowing-down map from Z̃ to Z.

We shall demonstrate our assertion concerning the nature of this bundle when Z is CP3 blown-up along
a single line. We determine the line bundle [E] of the divisor E and from this we shall get the ideal sheaf
of E. Let CP3 have the standard homogeneous coordinates [z0, z1, z2, z3] and let the line L be given by
z2 = z3 = 0. The blow-up of CP3 along L is then the subvariety of CP3×CP1 given by z2w3− z3w2 = 0,
where [w2, w3] are homogeneous coordinates for (the vertical) CP1, [7]. Call this subvariety CP̃3. Now
construct an open cover of CP̃3 from the restriction of the following cover of CP3 ×CP1. Let

Ui = {z : zi 6= 0} for i = 0, 1, 2, 3
Vj = {w : wj 6= 0} for j = 2, 3.

(2)

Then {Ui × Vj : i, j} covers CP3 ×CP1. Since the line to be blown-up is z2 = z3 = 0, neither U2 nor U3

will meet L so that a cover of the exceptional divisor is provided by the restrictions to CP̃3 of the sets

U0 = U0 × V2 U1 = U0 × V3

U2 = U1 × V2 U3 = U1 × V3 (3)

The bundle [E] is determined by the transition function gij = fi/fj, where fi is a defining function for the
divisor in Ui. Local coordinates for the blow-up are

in U0 {(z1

z0

,
z2

z0

,
w3

w2

) : z0w2 6= 0}

in U3 {(z0

z1

,
z3

z1

,
w2

w3

) : z1w3 6= 0} (4)

The exceptional divisor is given by z2/z0 = 0 in U0 and by z2/z1 = 0 in U3. Taking u = z1/z0, v =
z2/z0, w = w3/w2 in U0∩U3, the defining function in the former open set is v whilst in the latter it is vw/u.
The transition function for this intersection of open sets is thus g30 = wu−1. This is the transition function

4



for the bundle O(1,−1) (where we are using now the definition of [3] for O(a, b), with a = 1, b = −1).
The ideal sheaf of E is thus O(−1, 1) and hence our definition (1) coincides with that of [3] in this case.
To ensure that elements of H1(CP̃3,O(a, b)) are good representatives for elementary states Eastwood and
Hughston restricted the values of the parameters a, b to a ≥ 0 and b ≤ −2. In our case we make a similar
restriction, i.e. when considering codimension-two poles we shall restrict the parameter values to ai ≥ 0
and bi ≤ −2 for all i = 1 . . . s. We make this clear by proposing the following definition.

Definition 2.2 Let Z̃ be the compact twistor space Z blown-up along the projective lines L1, . . . , Ls as
above and let the bundle O(a1, . . . , as; b1, . . . , bs) be the bundle defined in (1). We shall say that an element
η of H1(Z − L,O(m)) has a codimension-2 pole of order at most li on Li , for li ≥ 0, and i = 1, . . . , s, if
there exist ai ≥ 0, bi ≤ −2 with ai + bi = m and li = −bi − 1 such that η is in the image of the restriction
map H1(Z̃,O(a1, . . . , as; b1, . . . , bs)→ H1(Z − L,O(m)).

To give some substance to this definition we shall prove that the above restriction map is injective.

Proposition 2.3 Let Z be a compact flat twistor space and Z̃ be its blow-up along L1, . . . , Ls as above.
Let m be any integer and let ai, bi be pairs of integers with ai ≥ 0, bi ≤ −2 and ai+ bi = m, for i = 1, . . . , s.
Then the restriction map

H1(Z̃,O(a1, . . . , as; b1, . . . , bs))→ H1(Z − L,O(m))

is injective.

Proof We shall confine attention to the case of a single line L and the general case will follow. Since Z is
a flat twistor space there is an open neighbourhood of L which is biholomorphic to P+ in CP3. Let the
blow-up of P+ be P̃+. The local cohomology exact sequence [18] is then

→ H1
E(Z̃,O(a, b))→ H1(Z̃,O(a, b))→ H1(Z − L,O(m))→ (5)

with the second map being restriction. We must show that the first term in the sequence above is zero.
Since E ⊂ P̃+ ⊂ Z̃ and E ⊂ P̃+ ⊂ CP̃3 the excision theorem for local cohomology [18] then gives

H1
E(Z̃,O(a, b)) = H1

E(P̃+,O(a, b)) = H1
E(CP̃3,O(a, b)) (6)

so that it will suffice to prove that this latter group is zero. This may be deduced from the local cohomology
exact sequence for CP̃3

→ H0(CP̃3,O(a, b))
r0→ H0(CP3 − L,O(m))→ H1

E(CP̃3,O(a, b))→
→ H1(CP̃3,O(a, b))

r1→ H1(CP3 − L,O(a, b))→ (7)

with r0 and r1 the respective restriction maps. When a ≥ 0 and b ≤ −2 it is shown in [3] that the former
is an isomorphism and the latter is injective. This proves the proposition. 2

Having established the injectivity of the restriction map we now wish to determine the nature of its
image. This will give further substance to our definition of codimension-two poles. We choose coverings
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of Z̃ and Z −L consisting of Stein open sets and this will enable us to display the singularity structure of
elements in the image of this map. We shall consider the case of a single line since this will exhibit all the
relevant features. (For the definition and properties of Stein sets see [6].)

We begin by choosing a covering of Z by Stein open sets as follows. The line L is contained in a
neighbourhood which is biholomorphic to (and which, for convenience, we shall refer to as) P+. Cover L
by Stein open sets contained in P+ and call these sets {Ai}. Cover the rest of Z − L by Stein open sets.
Now think of P+ as a subspace of CP3 and let the line L be given by z2 = z3 = 0, as above. In this setting
the sets Uj = {z : zj 6= 0} for j = 2, 3 is a covering of CP3 − L by Stein open sets. Then {Ai ∩ Uj} is a
covering of P+−L by Stein open sets. The cover of Z −L formed from these sets together with the other
sets covering Z − L, we shall call V .

In a similar fashion we may construct a Stein open covering of Z̃. Begin with the original cover of
Z given above, so that Ai ∩ L 6= ∅ and all Ai are in P+. The blow-up of P+ along L is a subvariety of
P+ × CP1 so that any Stein open cover of the latter set, when restricted to P̃+ , is a Stein open cover
of P̃+. If the (vertical) CP1 has coordinates [w2, w3] then P̃+ is the subvariety of P+ × CP1 given by
z2w3 − z3w2 = 0. The cover Vj = {w : wj 6= 0} for j = 2, 3 is then a Stein open cover of CP1. The

restriction to P̃+ of the sets {Ai × Vj} is then a Stein open cover of that set. These, together with the
original Stein sets on Z − L, form a cover of Z̃, which we shall label W .

Proposition 2.4 Let Z̃ be the blow-up of the compact flat twistor space Z along the line L, as above, and
let W and V be the covers of Z̃ and Z −L constructed in the previous paragraph. Let ai ≥ 0 and bi ≤ −2.

(a) Let {ρ̃αβ} be a Cech 1- cocycle for the cover W, representing an element of H1(Z̃,O(a, b)) and
let {ραβ} be its restriction to Z − L. Then {ραβ} is a Cech 1-cocycle for the cover V and if ραβ is defined
on (Ai ∩ Uj) ∩ (Ak ∩ Ul), with Ai ∩ Ak ∩ L 6= ∅, then ραβ has the form

h0g0

(z2)−b
+

h1g1

z−b−1
2 z3

+ . . .+
h−b−1g−b−1

z2z
−b−1
3

+
h−bg−b

(z3)−b−1
(8)

where the gi are holomorphic homogeneous functions of (z2, z3), with homogeneity zero, defined on Uj ∩Ul,
and the hi are holomorphic functions homogeneous of degree a, with a holomorphic extension to Ai ∩ Aj.

(b) Conversely if {ραβ} is a Cech 1-cocycle for the cover V representing an element of H1(Z −
L,O(m)), and if {ραβ}is defined on (Ai ∩ Uj) ∩ (Ak ∩ Ul), where Ai ∩ Ak ∩ L 6= ∅, and has the form (8),
then there is a Cech 1-cocycle {ρ̃αβ} for W, representing an element of H1(Z̃,O(a, b)), whose restriction
to Z − L is in the cohomology class of {ραβ}.

Proof (a) Let {ρ̃αβ} be defined on the sets (Ai×Vj)∩(Ak×Vl) = (Ai∩Ak)×(Vj∩Vl), where Ai∩Ak∩L 6= ∅.
The 1-cocycle {ρ̃αβ} is then a sum of elements of the form d(z)e(w) |P̃+ , where d(z) ∈ O(a)(Ai ∩ Ak) and
e(w) ∈ O(b)(Vj ∩ Vl). The function e(w) can be written as a Laurent series of the form

e(w) =
1

w−b2

∞∑
r=0

ar

(
w3

w2

)r
+

1

w−b3

∞∑
s=0

cs

(
w2

w3

)s
+

e1

w2w
−b−1
3

+ . . .+
e−b−1

w−b−1
2 w3

(9)
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When d(z)e(w) is restricted to P̃+ and away from the exceptional divisor (so that w2 : w3 = z2 : z3), it
becomes

d(z)

z−b2

∞∑
r=0

ar

(
z3

z2

)r
+

d(z)

z−b−1
3

∞∑
s=0

cs

(
z2

z3

)s
+

d(z)e1

z2z
−b−1
3

+ . . .+
d(z)e−b−1

z−b−1
2 z3

(10)

and this is the form described in (8).

(b) Conversely, suppose that {ραβ} is a Cech 1-cocycle for the covering V with the stated form, i.e. ραβ
is defined on (Ai ∩ Uj) ∩ (Ak ∩ Ul) with Ai ∩ Aj ∩ L 6= ∅, and

ραβ =
−b∑
t=0

htgt

z−b−t2 zt3
(11)

where ht is holomorphic and homogeneous of degree a on the whole of Ai ∩ Ak, and gt is a holomorphic
function of (z2, z3) defined on Uj ∩ Ul and homogeneous of degree zero. Now choose ρ̃αβ on the set
(Ai×Vj)∩ (Ak×Vl) = (Ai ∩Ak)× (Vj ∩Vl) as follows. The gt of (11) are holomorphic functions of (z2, z3)
only, with homogeneity zero, so that gt(w)/(w−b−t2 wt3) ∈ O(b)(Vj ∩ Vl) (since gt is defined on Vj ∩ Vl). The
ht(z) are holomorphic on Ai ∩ Ak and homogeneous of degree a, so that if we take

ρ̃αβ =

( −b∑
t=0

ht(z)
gt(w)

w−b−t2 wt3

)
|P̃+ (12)

then ρ̃αβ, when restricted away from the exceptional divisor to Z − L, is precisely ραβ. It remains only to
show that {ρ̃αβ} satisfies the cocycle condition. If ραβ − ραγ + ρβγ = 0 and the common domain of these
three elements is (Ai ∩Uj)∩ (Ak ∩Ul)∩ (Am ∩Un) 6= ∅ with Ai ∩Ak ∩Am ∩L 6= ∅, then ρ̃αβ − ρ̃αγ + ρ̃βγ is

a holomorphic function defined on the set (Ai ∩Ak ∩Am)× (Vj ∩ Vl ∩ Vn). Its restriction to P̃+ away from
the exceptional divisor is ραβ − ραγ + ρβγ and this vanishes on its (open) domain. Since ρ̃αβ − ρ̃αγ + ρ̃βγ is
holomorphic and zero on an open set, it is identically zero. 2

Remarks (a) The form of the singularity given by (8) has a strong resemblance to that of an elementary
state, though it has the extra terms h0g0/z

−b
2 and h−bg−b/z

−b
3 . In the case of elementary states these

represent coboundary terms. It seems likely that this is also true in general, though we have not been able
to prove this.

(b) We now have an identification of the elements of H1(Z̃,O(a1, . . . , as; b1, . . . , bs)) with those elements
of H1(Z − L,O(m)) having codimension-2 poles on each Li of prescribed maximum order.

3 Calculation of the Euler Characteristic

The calculation of the holomorphic Euler characteristic of the bundle O(a1, . . . , as; b1, . . . , bs) on Z̃ is a
relatively simple matter, and can be found in terms of χ(Z,O(m)). Recall that if S is a submanifold of
codimension-1 of a compact complex manifold X, and if F is a holomorphic line bundle on X, then there
is a short exact sequence

0→ O(F ⊗ [S]∗)→ O(F )
rS→ O(FS)→ 0 (13)
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where [S]∗ is the dual of the line bundle of the divisor S, FS is the restriction of F to S, with restriction
map rS [19]. In our case, if we first consider only the divisor E1 then we have the short exact exact sheaf
sequence

0→ O(a1 − 1, . . . , as; b1 + 1, . . . , bs)→ O(a1, . . . , as; b1, . . . , bs)→ OE1(a1; b1)→ 0 (14)

where the last term is O(a1, . . . , as; b1, . . . bs) restricted to E1. Thus we obtain

χ(Z̃,O(a1, . . . , as; b1, . . . bs))− χ(Z̃,O(a1 − 1, . . . , as; b1 + 1, . . . bs)) = χ(E1,O(a1, b1))

= (1 + a1)(1 + b1) (15)

since each Ei is a CP1 ×CP1. A simple induction argument for this and the other Ej quickly gives

χ(Z̃,O(a1, . . . , as; b1, . . . , bs)) = χ(Z,O(m))− 1

6

s∑
j=1

bj(bj + 1)(3m− 2bj + 5)

=
1

12
(m+ 1)(m+ 2)(m+ 3)χ

−1

8
(m+ 2)[(m+ 1)(m+ 3)− 1]τ

−1

6

s∑
i=1

bi(bi + 1)(3m− 2bi + 5) (16)

where χ is the Euler characteristic of the compact Riemannian 4-manifold X, and τ is its signature. This
follows from the fact that χ(Z̃,O(m, . . . ,m; 0, . . . , 0)) = χ(Z,O(m)) and the value of this has already been
calculated. (See [5] for instance, or it can be calculated from the Chern classes for Z in [10].)

4 Analytic Cohomology on Flat and Blown-Up Twistor Space

In order to find the dimension of the H1 term in the alternating sum which makes up the holomorphic
Euler characteristic, it is necessary to determine the dimensions of the other terms. Instead of proceeding
directly we shall show that, in some cases, it will be sufficient to have this information for cohomology
groups on the flat twistor space. This will allow the use of vanishing theorems for compact flat twistor
spaces, some of which are well known. The awkward term term to deal with is the H2 term. We first find
its Serre dual when the exceptional divisor E is a single irreducible quadric and the general case will again
be obvious.

The Serre dual [21] of H2(Z̃,O(a, b)) is H1(Z̃, κZ̃⊗O(a, b)∗) where κZ̃ is the canonical bundle of Z̃ and
O(a, b)∗ is the dual bundle. This latter is plainly O(−a,−b). The canonical bundle can be found using
the fact [8] that, for a blown-up manifold, κZ̃ = $∗(κZ)⊗ [E] where $ is the blow-down map. The former
bundle is O(−4, 0) and the latter is O(1,−1), so that κZ̃ = O(−3,−1). In the general case, one now has
that

H2(Z̃,O(a1, . . . , as; b1, . . . bs)) ∼= H1(Z̃,O(c1, . . . , cs; d1, . . . ds)) (17)
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where ci = −ai − 3 and di = −bi − 1 for i = 1, . . . , s. For codimension-2 poles the further restrictions
ai ≥ 0 and bi ≤ −2 must be imposed, so that, in this case, ci ≤ −3 and di ≥ 1. Then for each i, one has
ci + di = n, with n = −m− 4.

Our next task is to establish some of the properties of the cohomology groups H1(P̃+,O(c, d)) and
H1(P+,O(c+ d)) which will be required later in this section. Here we are again considering the case of a
single line L in a neighbourhood P+, so that P̃+ is P+ blown-up along a single line. We shall show that
when c ≤ −3 and d ≥ 1, there is a monomorphism from H1(P̃+,O(c, d)) into H1(P+,O(c+ d)), and this
quickly extends to the general case. The existence of this monomorphism is established in the next three
lemmas.

Lemma 4.1 If c ≤ −3 and d ≥ 1 then every element of H1(P̃+,O(c, d)) can be represented as the restric-
tion to P̃+ of a sum of terms of the form f(z)g(w) for some f ∈ H1(P+,O(c)) and g ∈ H0(CP1,O(d)).

Proof The method is a simple adaptation of [3]. The bundle O(c, d) can be defined by the short exact
sheaf sequence

0→ OP+×CP1(c− 1, d− 1)
σ→ OP+×CP1(c, d)

ρ→ OP̃+(c, d)→ 0 (18)

where the first map is multiplication by the ideal sheaf of P̃+, and the second is restriction to this subvariety.
This leads to a long exact sequence in cohomology which, for c ≤ −3 and d ≥ 1, yields

0→ H0(P̃+,O(c, d))→ H1(P+ ×CP1,O(c− 1, d− 1))→
→ H1(P+ ×CP1,O(c, d))→ H1(P̃+,O(c, d))→ 0 (19)

the penultimate map being restriction. The zeros in (19) are a consequence of the vanishing of the
respective cohomology groups, which can be verified by using the Künneth formula for sheaf cohomology.
This may also be used to prove that if c ≤ −3 and d ≥ 1 then H1(P+ ×CP1,O(c, d)) = H1(P+,O(c))⊗
H0(CP1,O(d)) and the lemma follows. 2

Lemma 4.2 Let c ≤ −3 and d ≥ 1. If f1 ∈ H1(P̃+,O(c, d)) then there exists f2 ∈ H1(P+,O(c+ d)) such

that f1

∣∣∣P̃+−E = f2 |P+−L where we have identified P̃+ − E with P+ − L.

Proof Suppose f1 ∈ H1(P̃+,O(c, d)). Then by (4.1) we can find f(z) ∈ H1(P+,O(c)) and g(w) ∈
H0(CP1,O(d)) such that f1 = f(z)g(w) |P̃+ . Taking [z0, z1, z2, z3] as coordinates on P+ and [w2, w3] as

coordinates on CP1, then in P̃+, and away from the exceptional divisor, we have w2 : w3 = z2 : z3. Thus
f1, when restricted away from the exceptional divisor, becomes f(z)g(z)

∣∣∣P̃+−L , since we may identify g(z)

with an element of H0(P+,O(d)). The result is now clear. 2

Lemma 4.3 The restriction maps s1, s2

s1 : H1(P̃+,O(c, d))→ H1(P̃+ − E,O(c+ d))

s2 : H1(P+,O(c+ d))→ H1(P+ − L,O(c+ d))

are both monomorphisms.
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Proof (a)We shall deal with s1 first. The local cohomology exact sequence for P̃+ is

→ H0(P̃+,O(c, d))→ H0(P+ − L,O(c+ d))→
→ H1

E(P̃+,O(c, d))
γ→ H1(P̃+,O(c, d))→ H1(P+ − L,O(c+ d))→ (20)

and we shall show that γ is the zero map.

First note that the restriction map of H0(P̃+,O(c, d)) to H0(P+ − L,O(c + d)) is injective since any
element of the latter is, locally, a holomorphic function, and if its restriction to the open subset P+ − L
is zero, then it is identically zero. Any element of H0(P̃+,O(c, d)), away from the exceptional divisor, is
then either a homogeneous polynomial, or zero. Both cases are well defined globally on CP̃3 − L, so that
H0(P̃+,O(c, d)) is isomorphic to H0(CP̃3,O(c, d)).

The bundle O(c, d) can also be defined on CP̃3 in the same way as on P̃+, i.e. by the short exact
sequence

0→ OCP3×CP1(c− 1, d− 1)→ OCP3×CP1(c, d)→ OCP̃3(c, d)→ 0 (21)

and this gives rise to the long exact sequence in cohomology

→ H0(CP3 ×CP1,O(c, d))→ H0(CP̃3,O(c, d)) → H1(CP3 ×CP1,O(c− 1, d− 1))→
→ H1(CP3 ×CP1,O(c, d))→ H1(CP̃3,O(c, d)) → H2(CP3 ×CP1,O(c− 1, d− 1))→

Using the Künneth formula with c ≤ −3 and d ≥ 1, one can easily show that

H0(CP̃3,O(c, d)) = H1(CP̃3,O(c, d)) = 0 (22)

Thus (20) becomes

0→ H0(P+ − L,O(c+ d))→ H1
E(P̃+,O(c, d))

γ→ H0(P̃+,O(c, d))→ H1(P+ − L,O(c+ d)) (23)

Since E ⊆ P̃+ ⊆ CP̃3, and since E is closed and P̃+ is open in CP̃3, we have H1
E(CP̃3,O(c, d)) ∼=

H1
E(P̃+,O(c, d)) by the excision theorem for local cohomology. The latter term may now be found from

the local cohomology sequence

H0(CP̃3,O(c, d))→ H0(CP3 − L,O(c+ d))→ H1
E(CP̃3,O(c, d))→ H1(CP̃3,O(c, d)) (24)

Using (22) we deduce that H0(CP3 − L,O(c+ d)) ∼= H1
E(CP̃3,O(c, d)). Since H0(CP3 − L,O(c+ d)) ∼=

H0(CP3,O(c+ d)) ∼= H0(P+,O(c+ d)) ∼= H0(P+ − L,O(c+ d)), it is apparent that γ is indeed the zero
map.

(b) For s2 we have the local cohomology sequence

→ H1
L(P+,O(n))→ H1(P+,O(n))→ H1(P+ − L,O(n))→ (25)

We use the excision theorem again to obtain H1
L(P+,O(n)) ∼= H1

L(CP3,O(n)). This latter group can be
found from the local cohomology exact sequence

H0(CP3,O(n))→ H0(CP3 − L,O(n))→ H1
L(CP3,O(n))→ H1(CP3,O(n)) (26)
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Since H1(CP3,O(n)) = 0 and H0(CP3,O(n))→ H0(CP3−L,O(n)) is an isomorphism, H1
L(P+,O(n)) =

0.2

As a consequence of the last lemma we have the following.

Proposition 4.4 For c ≤ −3 and d ≥ 1 there are monomorphisms

r1 : H1(P̃+,O(c, d))→ H1(P+,O(c+ d))

r0 : H0(P̃+,O(c, d))→ H0(P+,O(c+ d))

Proof For the former simply take r1 = s−1
2 s1, where s1, s2 are as in lemma 4.3. For the latter it is

enough to note that the restriction map H0(P̃+,O(c, d)) → H0(P+ − L,O(c + d)) is injective, and the
restriction map H0(P+,O(c+ d))→ H0(P+ − L,O(c+ d)) is an isomorphism. 2

The lines Li in Z which are to be blown-up, are pairwise disjoint, so that each Li has a neighbourhood
Ni which is biholomorphic to P+, and these may be chosen to be pairwise disjoint. Take N to be the
disjoint union of these Ni and Ñ to be N blown-up along each of the lines, so that Ñ is a disjoint union of
the open sets Ñi. We then have Z = (Z − L) ∪N and Z̃ = (Z̃ − E) ∪ Ñ = (Z − L) ∪ Ñ where the latter
is the observation that Z − L is biholomorphic to Z̃ − E. We now have the following two Mayer-Vietoris
sequences for sheaf cohomology [18].

H0(Ñ)
−h∗
↘

j∗

↗ H1(Ñ)
−h∗
↘

⊕ H0(N − L)
α−→ H1(Z̃) ⊕ H1(N − L)

H0(Z − L)
l∗

↗
k∗

↘ H1(Z − L)
l∗

↗

(27)

H0(N)
−m∗

↘
s∗

↗ H1(N)
−m∗

↘
⊕ H0(N − L)

β−→ H1(Z) ⊕ H1(N − L)

H0(Z − L)
l∗

↗
t∗

↘ H1(Z − L)
l∗

↗

(28)

Here and in the proof below the sheaves, which are O(c1, . . . , cs; d1, . . . , ds) and O(n) on the blown-up and
flat spaces respectively, have been omitted for notational convenience. The maps r1 and r2 of Proposi-
tion 4.4 can be extended in an obvious way to the corresponding cohomology groups for Ñ and N , and this
fact, together with the above two Mayer-Vietoris sequences, allows a detailed analysis of the relationship
between the cohomologies of Z̃ and Z. In particular, we are able to prove the following.

Theorem 4.5 Let Z be a compact flat twistor space and let L = L1∪. . .∪Ls, where the Li are pairwise non-
intersecting complex projective lines in Z. Let Z̃ be the blow-up of Z along L and let O(c1, . . . , cs; d1, . . . , ds)
be the bundle on Z̃ described above, with ci ≤ −3, di ≥ 1, and ci+di = n for i = 1, . . . , s. If H0(Z,O(n)) =
H1(Z,O(n)) = 0 then

dimH1(Z̃,O(c1, . . . , cs; d1, . . . , ds) =

{
1
6
[s(n+ 1)(n+ 2)(n+ 3)] if n ≥ 0

0 if n < 0
(29)
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Proof First note that since the restriction map H0(P+,O(n))→ H0(P+ − L,O(n)) is an isomorphism,
this must also be the case for the map m∗ on the left of (28), so that β is the zero map. The map s∗ ⊕ t∗
is thus injective. If r1 is the map of Proposition 4.4 and i1 is the appropriate identity map, then r1 ⊕ i1
is a monomorphism from H1(Ñ) ⊕ H1(Z − L) into H1(N) ⊕ H1(Z − L). From the definition of r1, and
referring to the right hand sides of (27) and (28), one has r1 = (m∗)−1h∗. The kernel of the map l∗ − h∗
now maps injectively into the kernel of l∗−m∗, where we are again referring to the right hand sides of both
(27) and (28). There is therefore an injection of the image of the map j∗ ⊕ k∗ into H1(Z). The vanishing
of H1(Z) now implies that H1(Z̃) is the image of the map α , and this remains to be evaluated.

The image of α is the cokernel of l∗−h∗, which isH0(N−L)/(iml∗+imh∗). The map r0 of Proposition 4.4
is, in this case, given by r0 = (m∗)−1h∗ so that h∗ = m∗r0. Since r0 is a monomorphism and m∗ is an
isomorphism, we can identify h∗(H0(Ñ)) as a subgroup of H0(N − L) and r0(H

0(Ñ)) as a subgoup of
H0(N), so that, up to isomorphism, we have

H0(Ñ) + iml∗ ⊆ H0(N) + iml∗ ⊆ H0(N − L) (30)

Up to isomorphism therefore, the image of β is H0(N − L)/(H0(N) + iml∗) and by the second iso-
morphism theorem for groups, this is isomorphic to the quotient of H0(N − L)/(H0(Ñ) + iml∗) by
(H0(N) + iml∗)/(H0(Ñ) + iml∗). Since β is the zero map, and since the former group is the image of
α, we have imα = (H0(N) + iml∗)/(H0(Ñ) + iml∗). From (22), since ci ≤ −3 and di ≥ 1, it follows that
H0(Ñ) is zero. This gives

imα =
H0(N) + iml∗

iml∗
(31)

The map l∗ is injective, N − L being an open subset of Z − L, so to complete the theorem it will suffice
to show that the vanishing of H0(Z) implies the vanishing of H0(Z − L). The restriction map is clearly
injective. (See the paragraph preceding (21) for a proof.) For surjectivity, note that an element of H0(Z−L)
can be represented locally as a holomorphic function. Since L has codimension-2 in Z, Hartogs theorem
implies that this may be extended to all of Z, so that the restriction map is surjective. We have shown
that

dimH1(Z̃,O(c1, . . . , cs; d1, . . . , ds) = s.dimH0(P+,O(n)), (32)

so the proof is now complete. 2

We complete this section by dealing with the two end terms in the holomorphic Euler characteristic.

Theorem 4.6 Let Z̃, Z,O(c1, . . . , cs; d1, . . . , ds),O(n) be as above. Then H0(Z̃,O(c1, . . . , cs; d1, . . . , ds)) =
0 if H0(Z,O(n)) = 0.

Proof This is elementary. The restriction map from H0(Z̃,O(c1, . . . , cs; d1, . . . , ds)) to H0(Z − L,O(n))
is injective whilst the restriction map from H0(Z,O(n)) to H0(Z − L,O(n)) is an isomorphism. 2

Corollary 4.7 With the conditions as above, if H3(Z,O(n)) = 0 then H3(Z̃,O(c1, . . . , cs; d1, . . . , ds)) = 0.
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Proof Noting that the proof of Theorem 4.6 does not depend upon any restrictions on the values of ci, di,
(apart from having ci + di = n so that the bundle O(c1, . . . , cs; d1, . . . , ds) is well defined), the corollary
follows on taking the Serre duals of both groups, and applying the theorem.

Remarks (a) If the n of Theorem 4.5 is negative then H0(P+,O(n)) is zero. The H0(N) of (31) is then
zero, since it is a direct sum of such groups. In this case the vanishing of H1(Z,O(n)) is sufficient to
guarantee the vanishing of H1(Z̃,O(c1, . . . , cs; d1, . . . , ds)).

(b) As noted above, Theorem 4.6 and Corollary 4.7 do not require any restrictions on the parameters
ci, di apart from having ci+di = n, which is essential for the definition of the bundleO(c1, . . . , cs; d1, . . . , ds).

First note that the restriction map of H0(P̃+,O(c, d)) to H0(P+ − L,O(c + d)) is injective since any
element of the latter is, locally, a holomorphic function, and if its restriction to the open subset P+ − L
is zero, then it is identically zero. Any element of H0(P+ − L,O(c + d)) can be uniquely extended to an
element of H0(P+,O(c+ d)) and this in turn can be extended to an element of H0(CP3,O(c+ d)). Thus
every element of H0(P̃+,O(c, d)) can be extended to an element of H0(CP̃3,O(c, d)) and these two groups
are then clearly isomorphic. 2

5 The Dimension of H1(Z̃,O(a1, . . . , as; b1, . . . , bs))

Throughout this section, Z is the twistor space of a compact Riemannian self-dual 4-manifold, M . We
treat separately, the cases of positive and negative scalar curvature of M .

Negative Scalar Curvature When M has negative scalar curvature, there are a number of vanishing
theorems which may be utilised. In particular it is well known that H0(Z,O(n)) = 0 for n > 0 and
H3(Z,O(n)) = 0 for n ≥ 0. Using Serre duality one has immediately that H0(Z,O(n)) = 0 for n ≤ −4
and H3(Z,O(n)) = 0 for n < −4. In addition, it is shown in [15] that if M is also Einstein, then
H1(Z,O(n)) = 0 for n > 0. Noting that the conditions of theorem 4.5 require Z to be a flat twistor space,
and that this corresponds to τ being zero in (16), we can make the following deduction.

Theorem 5.1 Let M be a compact, Riemannian, conformally flat, Einstein 4-manifold, having negative
scalar curvature. Let Z be its twistor space and let L and O(a1, . . . , as; b1, . . . , bs) be as in definition 2.1,
with ai ≥ 0 and bi ≤ −2. Then for m < −4,

dimH1(Z̃,O(a1, . . . , as; b1, . . . , bs)) =
1

6
s(−m− 3)(−m− 2)(−m− 1)

− 1

12
(m+ 1)(m+ 2)(m+ 3)χ

+
1

6

s∑
i=1

bi(bi + 1)(3m− 2bi + 5)

where χ is the Euler characteristic of M .
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Proof This is simply a matter of collecting together the relevant information. First, since H0(Z,O(m)) =
H3(Z,O(m)) = 0 for m < −4, Theorem 4.6 and its corollary imply that H0(Z̃,O(a1, . . . , as; b1, . . . , bs))
and H3(Z̃,O(a1, . . . , as; b1, . . . , bs)) both vanish for ai + bi = m < −4.

The Serre dual of H2(Z̃,O(a1, . . . , as; b1, . . . , bs)) is H1(Z̃,O(c1, . . . , cs; d1, . . . , ds)), with ci ≤ −3 and
di ≥ 1. Since ci + di = −m − 4 > 0 the vanishing of H0(Z,O(n)) and H1(Z,O(n)) for n > 0, together
with Theorem 4.5, gives the result. 2

Positive Scalar Curvature When M has positive scalar curvature this method will yield only a par-
tial answer, since there are fewer vanishing theorems for the twistor space Z. In any case, one has
that H0(Z,O(n)) = 0 if n < 0 (simply by restricting to a twistor line), and in this case we also have
H1(Z,O(n)) = 0 if n < 0. (Note that this does not require M to be Einstein). We obtain the following.

Theorem 5.2 Let M be a compact Riemannian conformally flat 4-manifold, having positive scalar curva-
ture. Let Z be its twistor space and let L and O(a1, . . . , as; b1, . . . , bs) be as in definition 2.1, with ai ≥ 0
and bi ≤ −2. Then for m ≥ 0,

dimH1(Z̃,O(a1, . . . , as; b1, . . . , bs)) = dimH0(Z̃,O(a1, . . . , as; b1, . . . , bs))

− 1

12
(m+ 1)(m+ 2)(m+ 3)χ

+
1

6

s∑
i=1

bi(bi + 1)(3m− 2bi + 5)

where χ is the Euler characteristic of M .

Proof From our discussions above, H0(Z,O(−m−4)) = 0 and H1(Z,O(−m−4)) = 0. From Theorem 4.5
this implies that (the Serre dual of) H2(Z̃,O(a1, . . . , as; b1, . . . , bs)) vanishes. Since H3(Z,O(m)) = 0 for
m ≥ 0, we deduce that H3(Z̃,O(a1, . . . , as; b1, . . . , bs)) is zero. This proves the result. 2

Remarks (a) The conditions satisfied by theM of Theorem 5.1 are precisely those for compact hyperbolic
manifolds.

(b) In the case of negative scalar curvature, H0(Z,O(n)) and H3(Z,O(n)) both vanish for n > 0 and
for n < −4. If a vanishing theorem could be found for H1(Z,O(n)) for n < −4, when M is conformally
flat, then this method could be used to determine the dimension of H1(Z̃,O(a1, . . . , as; b1, . . . , bs)) when
m > 0. Such a vanishing theorem is unlikely since it would hold when M had the additional property
of being Einstein, which together with the vanishing of H1(Z,O(n)) when n > 0, would imply that the
holomorphic Euler characteristic of O(n) on Z would be zero for n > 0 and for n < −4. This is clearly
not so.

(c) In the case of positive scalar curvature the dimension of H1(Z̃,O(a1, . . . , as; b1, . . . , bs)) has been
determined in terms of H0(Z̃,O(a1, . . . , as; b1, . . . , bs)), when m ≥ 0, and this latter group vanishes if
H0(Z,O(m)) vanishes. Using the Penrose transform [1, 2], one can show that an element of this group
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corresponds to the solution of a system of partial differential equations which is heavily overdetermined.
Thus one would expect the vanishing of H0(Z,O(m)) for m ≥ 0, at least generically, so that the results of
Theorem 5.2 must hold in all but a few cases.

In the generic case therefore, the remarks made in (b) are equally valid when addressing the possibility
of the extension of this method to the case m < −4 , when M has positive scalar curvature.
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